Stein算法求最大公约数】的更多相关文章

一.Stein算法过程及其简单证明 1.一般步骤: s1:当两数均为偶数时将其同时除以2至至少一数为奇数为止,记录除掉的所有公因数2的乘积k: s2:如果仍有一数为偶数,连续除以2直至该数为奇数为止: s3:用更相减损法(辗转相减法),即GCD(a,b)=GCD(a-b,b),或辗转相除法求出两奇数的最大公约数d: s4:原来两数的最大公约数即为d*k: 2.简单证明: s1:即为求出两数为2的幂次方的最大公因数k: s2:当化简后两数一奇一偶时,显然奇数是不含偶数因子的,那么另一化简后偶数的所…
首先引进一个符号:gcd是greatest common divisor(最大公约数)的缩写,gcd( x,y ) 表示x和y的最大公约数.然后有一个事实需要了解:一个奇数的所有约数都是奇数.这个很容易,下面我们要用到.      来研究一下最大公约数的性质,我们发现有 gcd( k*x,k*y ) = k*gcd( x,y ) 这么一个非常好的性质(证明我就省去了).说他好是因为他非常符合我们化小的思想.我们试取 k=2 ,则有 gcd( 2x,2y ) = 2 * gcd( x,y ).这使…
参考文章 1.<linux c编程一站式学习>的习题5.3.1 2.百度百科Euclid算法:https://baike.baidu.com/item/Euclid%E7%AE%97%E6%B3%95 思想 使用Eucid算法编写两个正整数a和b的最大公约数(GCD, Greatest Common Dvisor) 1.如果a能整除b, 则最大公约数是b 2.否则,最大公约数等于b和a%b的最大公约数:即gcd(a,b)=gcd(b,a%b) code //功能:求取两个正整数的最大公约数 #…
求最小公约数,最easy想到的是欧几里得算法,这个算法也是比較easy理解的,效率也是非常不错的. 也叫做辗转相除法. 对随意两个数a.b(a>b).d=gcd(a.b),假设b不为零.那么gcd(a,b)=gcd(b.a%b) 证明: 令 r=a%b,即存在k,使得 a=b*k+r,那么r=a-b*k:显然r>=0,  r%d=((a%d)-(b*k)%d)%d.由于a%d=b%d=0,所以r%d=0: 因此求gcd(a,b)能够转移到求gcd(b,a%b).那么这就是个递归过程了.那什么时…
之前一直只知道欧几里得辗转相除法,今天学习了一下另外一种.在处理大数时更优秀的算法--Stein 特此记载 1.欧几里得(Euclid)算法 又称辗转相除法,依据定理gcd(a,b)=gcd(b,a%b) 实现过程演示: sample:gcd(15,10)=gcd(10,5)=gcd(5,0)=5 C语言实现: int Euclid_GCD(int a, int b) { return b?Euclid_GCD(b, a%b):a; } 2.Stein 算法 一般实际应用中的整数很少会超过64位…
greatest common divisor(最大公约数) 1.欧几里得算法 欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数. 其计算原理依赖于下面的定理: 两个整数的最大公约数等于其中较小的那个数和两数相除余数的最大公约数. 最大公约数(greatest common divisor)缩写为gcd. gcd(a,b) = gcd(b,a mod b) (不妨设a>b 且r=a mod b ,r不为0),以此辗转相除得到最终结果.   证明: a可以表示成a = kb + r…
package Basic; import java.util.Scanner; public class Gcd { public static void main(String[] args) { Scanner scanner=new Scanner(System.in); int num_1=scanner.nextInt(); int num_2=scanner.nextInt(); if(num_1>num_2){ System.out.println(gcd(num_1, num_…
辗转相除法,一种求最大公约数的算法 已知:A / B = C ······ R  (A.B.C.R皆是整数) 假设:D是A的余数,D也是B的余数,那么D就是A和B的公约数 D是A和B的约数,则A和B是D的倍数,B * C也是D的倍数 既然A与B*C都是D的倍数,那么A与B*C的差也是D的倍数 A - B*C = R 所以R也是D的倍数 如果D是A或B的公约数,那么D也是B和R的公约数 故:(A,B)= (B,R) 由以上证明则可以求出最大的公约数 例如:求72和28的最大公约数 72 / 28…
题目 3在十进制下满足若各位和能被3整除,则该数能被3整除. 5在十六进制下也满足此规律. 给定数字k,求多少进制(1e18进制范围内)下能满足此规律,找出一个即可,无则输出-1. 题解 写写画画能找到规律,即是求与k互质的数x,x进制下即能满足上述规律. 相关 求最大公约数:辗转相除法(又叫欧几里得算法) 欧几里德定理: gcd(a, b) = gcd(b , a mod b) ,对于正整数a.b. 其中a.b大小无所谓.当a值小于b值时,算法的下一次递归调用就能够将a和b的值交换过来. 代码…
#欧几里得求最大公约数 #!/usr/bin/env python #coding -*- utf:8 -*- #iteration def gcd(a,b): if b==0: return a else: return gcd(b, remainder(a, b)) #此方法仅仅书用于a和b都为正数 def gcd_1(a,b): while(b>0): rem = remainder(a,b) a = b b = rem return a def remainder(x,y): retur…