Spark SQL 1.3测试】的更多相关文章

Spark SQL 1.3 参考官方文档:Spark SQL and DataFrame Guide 概览介绍参考:平易近人.兼容并蓄——Spark SQL 1.3.0概览 DataFrame提供了一条联结所有主流数据源并自动转化为可并行处理格式的渠道,通过它Spark能取悦大数据生态链上的所有玩家,无论是善用R的数据科学家,惯用SQL的商业分析师,还是在意效率和实时性的统计工程师. 以一个常见的场景 -- 日志解析为例,有时我们需要用到一些额外的结构化数据(比如做IP和地址的映射),通常这样的…
在最新的master分支上官方提供了Spark JDBC外部数据源的实现,先尝为快. 通过spark-shell测试: import org.apache.spark.sql.SQLContext val sqlContext = new SQLContext(sc) import sqlContext._ val TBLS_JDBC_DDL = s""" |CREATE TEMPORARY TABLE spark_tbls |USING org.apache.spark.s…
通过Spark SQL External Data Sources JDBC实现将RDD的数据写入到MySQL数据库中. jdbc.scala重要API介绍: /** * Save this RDD to a JDBC database at `url` under the table name `table`. * This will run a `CREATE TABLE` and a bunch of `INSERT INTO` statements. * If you pass `tru…
Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完成特殊优化.可以通过SQL.DataFrames API.Datasets API与Spark SQL进行交互,无论使用何种方式,SparkSQL使用统一的执行引擎记性处理.用户可以根据自己喜好,在不同API中选择合适的进行处理.本章中所有用例均可以在spark-shell.pyspark shel…
Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 DataFrames 2.1 入口:SQLContext(Starting Point: SQLContext) 2.2 创建DataFrames(Creating DataFrames) 2.3 DataFrame操作(DataFrame Operations) 2.4 运行SQL查询程序(Running…
Spark SQL 之 Performance Tuning & Distributed SQL Engine 转载请注明出处:http://www.cnblogs.com/BYRans/ 缓存数据至内存(Caching Data In Memory) Spark SQL可以通过调用sqlContext.cacheTable("tableName") 或者dataFrame.cache(),将表用一种柱状格式( an in­memory columnar format)缓存至内…
转载请注明出处:http://www.cnblogs.com/xiaodf/ 之前的博客介绍了通过Kerberos + Sentry的方式实现了hive server2的身份认证和权限管理功能,本文主要介绍Spark SQL JDBC方式操作Hive库时的身份认证和权限管理实现. ThriftServer是一个JDBC/ODBC接口,用户可以通过JDBC/ODBC连接ThriftServer来访问SparkSQL的数据.ThriftServer在启动的时候,会启动了一个sparkSQL的应用程序…
自2013年3月面世以来,Spark SQL已经成为除Spark Core以外最大的Spark组件.除了接过Shark的接力棒,继续为Spark用户提供高性能的SQL on Hadoop解决方案之外,它还为Spark带来了通用.高效.多元一体的结构化数据处理能力.在刚刚发布的1.3.0版中,Spark SQL的两大升级被诠释得淋漓尽致. DataFrame 就易用性而言,对比传统的MapReduce API,说Spark的RDD API有了数量级的飞跃并不为过.然而,对于没有MapReduce和…
AMPLab 将大数据分析负载分为三大类型:批量数据处理.交互式查询.实时流处理.而其中很重要的一环便是交互式查询. 大数据分析栈中需要满足用户 ad-hoc.reporting. iterative 等类型的查询需求,也需要提供 SQL 接口来兼容原有数据库用户的使用习惯,同时也需要 SQL 能够进行关系模式的重组.完成这些重要的 SQL 任务的便是 Spark SQL 和 Shark 这两个开源分布式大数据查询引擎,它们可以理解为轻量级 Hive SQL 在 Spark 上的实现,业界将该类…
http://www.aboutyun.com/forum.php?mod=viewthread&tid=12358&page=1 1.DataFrame是什么?2.如何创建DataFrame?3.如何将普通RDD转变为DataFrame?4.如何使用DataFrame?5.在1.3.0中,提供了哪些完整的数据写入支持API? 自2013年3月面世以来,Spark SQL已经成为除Spark Core以外最大的Spark组件.除了接过Shark的接力棒,继续为Spark用户提供高性能的SQ…