【HDOJ】3071 Gcd & Lcm game】的更多相关文章

刚开始看这个题目,觉得没法做.关键点是数据小于100.因此,可以枚举所有小于100的素因子进行位压缩.gcd就是求最小值,lcm就是求最大值.c++有时候超时,g++800ms.线段树可解. /* 3071 */ #include <iostream> #include <sstream> #include <string> #include <map> #include <queue> #include <set> #include…
题意:给你一两个数m和n,它们分别是某对数A,B的gcd和lcm,让你求出一对使得A+B最小的A,B. n/m的所有质因子中,一定有一部分是只在A中的,另一部分是只在B中的. 于是对n/m质因子分解后,dfs枚举在A中的质因子是哪些,在B中的是哪些,然后尝试更新答案即可.(因为相等的质因子只可能同时在A中或者在B中,而long long内的数不同的质因子数不超过14个) 注意特判n==m的情况. #include<algorithm> #include<cstdio> #inclu…
莫比乌斯反演简单题目. /* 1695 */ #include <iostream> #include <string> #include <map> #include <queue> #include <set> #include <stack> #include <vector> #include <deque> #include <algorithm> #include <cstdio&…
[算法]欧几里德算法 #include<cstdio> int gcd(int a,int b) {?a:gcd(b,a%b);} int main() { int a,b; scanf("%d%d",&a,&b); printf("%lld",1ll*a*b/gcd(a,b)); ; }…
一.介绍 1.什么是GCD? Grand Central Dispatch.是苹果公司开发的一套多核编程的底层API. GCD首次公布在Mac OS X 10.6,iOS4及以上也可用.GCD存在于libdispatch.dylib这个库中,iOS程序默认动态载入这个库,无需手动引入. 2.GCD工作原理 让程序平行排队的特定任务.依据可用的处理资源,安排他们在不论什么可用的处理器核心上运行任务.一个任务能够是一个Function或是一个block. GCD的底层依旧是用线程实现,只是这样能够让…
题解 话说LOJ说我今天宜学数论= =看到小迪学了杜教筛去蹭了一波小迪做的题 标解的杜教筛的函数不懂啊,怎么推的毫无思路= = 所以写了个复杂度稍微高一点的?? 首先,我们发现f是个积性函数,那么我们就有-- \(\prod_{i = 1}^{k}f(p_{i}^{a_{i}})\) 我们发现,对于每个质因子,gcd是取较小值,lcm取较大值 \(f(lcm(x,y)) * f(gcd(x,y)) = \prod_{i = 1}^{k} f(p_{i}^{max(a_{i},b_{i}) + m…
题意说的非常清楚,即求满足gcd(n-a, n)*gcd(n-b, n) = n^k的(a, b)的不同对数.显然gcd(n-a, n)<=n, gcd(n-b, n)<=n.因此当n不为1时,当k>2时,不存在满足条件的(a,b).而当k=2时,仅存在(n, n)满足条件.因此仅剩n=1以及k=1需要单独讨论:当n = 1时,无论k为何值,均有且仅有(1,1)满足条件,此时结果为1:当k = 1时,即gcd(n-a, n)*gcd(n-b, n) = n,则令gcd(n-a, n) =…
其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到boundry,使得boundry * n_edge - sum_edge <= k/b, 或者建立s->t,然后不断extend s->t. /* 4729 */ #include <iostream> #include <sstream> #include <…
二进制GCD     GCD这种通用的算法相信每个OLER都会 ,辗转相除,代码只有四行 : int GCD(int a,int b){ if(b==0) return a; return GCD(b,a%b); } GCD算法使通过辗转相除法来求解两个数的最大公因数,又称欧几里得算法      可以知道:GCD(x,y)=GCD(x,y-x)      我们将b能被a整除记作a|b      那么假设z是最大公因数,那么有:             如果z|x,z|y,则z|(y-x)  (因…
题目大意:求lcm(1,2)+lcm(1,3)+lcm(2,3)+....+lcm(1,n)+....+lcm(n-2,n)+lcm(n-1,n)解法:设sum(n)为sum(lcm(i,j))(1<=i<j<=n)之间最小公倍数的和,f(n)为sum(i*n/gcd(i,n))(1<=i<n)那么sum(n)=sum(n-1)+f(n).可以用线性欧拉筛选+递推来做. 代码: #include <iostream> #include <cstdio>…