P4726 【模板】多项式指数函数】的更多相关文章

题目大意:给出$n-1$次多项式$A(x)$,求一个 $\bmod{x^n}$下的多项式$B(x)$,满足$B(x) \equiv e^{A(x)}$. 题解:(by Weng_weijie) 泰勒展开:$$f(x)=f(x_0)+\dfrac{f'(x_0)(x-x_0)}{1!}+\dfrac{f''(x_0)(x-x_0)^2}{2!}+\dots$$ 牛顿迭代: $$解关于 F(x) 的方程使得 G(F(x))\equiv 0\pmod{x^n} \\假设 G(F_0(x)) \equi…
题意 题目链接 Sol 多项式exp,直接套泰勒展开的公式 \(F(x) = e^{A(x)}\) 求个导\(F'(x) = A(x)\) 我们要求的就是\(G(f(x)) = lnF(x) - A(x)\)的零点. 然后把\(F(x)\)看做变量\(A(x)\)看做长度(什么鬼啊qwq) \(G'(F(x)) = \frac{1}{F(x)}\) 然后就可以牛顿迭代啦 \[F(x) = F_0(x) - \frac{G(F_0(x))}{G'(F_0(x))}\] \[F(x) = F_0(x…
手动博客搬家: 本文发表于20181127 08:39:42, 原地址https://blog.csdn.net/suncongbo/article/details/84559818 题目链接: https://www.luogu.org/problem/show?pid=4726 题意: 给定\(n\)次多项式\(A(x)\) 求多项式\(f(x)\)满足\(f(x)\equiv e^{A(x)} (\mod x^n)\) 题解 这个比对数函数复杂一些.. 前铺知识 泰勒展开 对于一个函数,我…
LINK:多项式 exp 做多项式的题 简直在嗑药. 前置只是 泰勒展开 这个东西用于 对于一个函数f(x) 我们不好得到 其在x处的取值. 所以另外设一个函数g(x) 来在x点处无限逼近f(x). 具体的 \(f(x) ≈ g(x)=g(0)+\frac{f^1(0)}{1!}x+\frac{f^2(0)}{2!}x^2+...+\frac{f^n(0)}{n!}x^n\) 牛顿迭代: 常用来求一个函数的零点:假设我们已经求得一个近似值x0 那么我们只需要过(x0,f(x0))这个点做函数图像…
思路 按照式子计算即可 \[ F(x)=F_0(x)(1-\ln F_0(x) +A(x)) \] 代码 // luogu-judger-enable-o2 #include <cstdio> #include <cstring> #include <algorithm> #define int long long using namespace std; const int MAXN = 300000; const int G = 3; const int invG…
补补补…… 这个题的解法让我认识到了泰勒展开的美妙之处. 泰勒展开 泰勒展开就是用一个多项式型的函数去逼近一个难以准确描述的函数. 有公式 $$f(x)\approx g(x) = g(x_0) + \frac{g'(x_0)}{1!}(x - x_0) + \frac{g^{(2)}(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{g^{(n)}(x_0)}{n!}(x - x_0)^n$$ 在这里$g^{(n)}$表示$g$的$n$阶导. 在$0$这个点的泰勒展开…
https://www.cnblogs.com/HocRiser/p/8207295.html 安利! #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define P 9982443…
前言 这里的全家桶目前只包括了\(ln,exp,sqrt\).还有一些类似于带余数模,快速幂之类用的比较少的有时间再更,\(NTT\)这种前置知识这里不多说. 还有一些基本的导数和微积分内容要了解,建议不懂的可以先去翻翻高二数学书. 之后多项式算法基本是一环扣一环的,所以前面的看不懂对于后面的理解会造成很大影响. 本博客涉及内容偏浅 Tips 这里是一些我个人的模板书写习惯 习惯相关的问题:默认将读入的\(n\)变为\(2\)的整数次幂形式,目前为止这样的做法都不会影响正确性 正确性相关的问题:…
多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(ll a,ll b){ ll res=1; for(;b;a=a*a%nmod,b>>=1)if(b&1)res=res*a%nmod; return res; } ll inv(ll n){ return qp(n,nmod-2); } //polynomial operations //…
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #include <cmath> #include <cctype> #include <cstdio> #include <algorithm> #define gc() getchar() const int N=1e6+5; const double PI=acos(…
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q)\leq n-m\)的多项式\(Q(x)\),满足\[A(x)=D(x)\times Q(x)+R(x)\] 其中\(R(x)\)可以看做是\(m-1\)次多项式(不足\(m-1\)次系数补\(0\)). 首先是想消除\(R(x)\)的影响. 对于一个\(n\)次多项式\(A(x)\),记\[A^R(x)=…
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ x^n)\] \[f^2(x)g^2(x)-2f(x)g(x)+1\equiv 0\ (mod\ x^{2n})\] \[2f(x)g(x)-f^2(x)g^2(x)\equiv 1\ (mod\ x^{2n})\] \[2f(x)g(x)-f^2(x)g^2(x)\equiv f(x)g'(x)…
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\)成立的最小正整数\(n\)为\(a\)模\(p\)的阶,记作\(\delta_p(a)\). 例:\(\delta_7(2)=3\). 原根 设\(p\)是正整数,\(a\)是整数,若\(\delta_p(a)=\varphi(m)\),则称\(a\)为模\(p\)的一个原根. 从另一方面来说,若\(g…
题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html https://www.cnblogs.com/Mychael/p/9216906.html 注意取模那里的 NTT 范围就是模数的次数: 各处注意一下对系数数组取模(超出的位置赋0). 代码如下: #include<iostream> #include<cstdio> #include&l…
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html https://www.cnblogs.com/Mychael/p/9045143.html 注意那个 \( \left\lceil n/2 \right\rceil \),因为如果 n = 6,那么 6 = 0+6 = 1+5 = 2+4 = 3+3,对 0,1,2,3 都有要求,所以下一层传…
题意: 题解: 这道题我思路大方向是正确的,但是生成函数推错导致一直WA,看了标程才改对-- 首先一个长为\(m\)的轮换的\(n\)次幂会分裂成\(\gcd(n,m)\)个长为\(\frac{m}{\gcd(n,m)}\)的轮换 所以合并的时候相当于对于一个长度\(l\)若存在一个\(m\)使得\(\frac{m}{\gcd(n,m)}=l\)则\(\gcd(n,m)\)个长度为\(l\)的轮换可以合并 显然不同长度的轮换是互不影响的,那么我们可以分开每种长度计算 就相当于对于一个长度为\(l…
Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inline int read() { char c=getchar();int x=0,f=1; while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();} while(c>='0'&&c<='9'){x=x*10+c-'0';c=get…
注:多项式的题目,数组应开:N的最近2的整数次幂的4倍. 多项式乘法 FFT模板 时间复杂度\(O(n\log n)\). 模板: void FFT(Z *a,int x,int K){ static int rev[N],lst; int n=(1<<x); if(n!=lst){ for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1); lst=n; } for(int i=0;i<…
众所周知,tzc 在 2019 年(12 月 31 日)就第一次开始接触多项式相关算法,可到 2021 年(1 月 1 日)才开始写这篇 blog. 感觉自己开了个大坑( 多项式 多项式乘法 好吧这个应该是多项式各种运算中的基础了. 首先,在学习多项式乘法之前,你需要学会: 复数 我们定义虚数单位 \(i\) 为满足 \(x^2=-1\) 的 \(x\). 那么所有的复数都可以表示为 \(z=a+bi\) 的形式,其中 \(a,b\) 均为实数. 复数的加减直接对实部虚部相加减就行了. 复数的乘…
上一篇:[知识总结]多项式全家桶(一)(NTT.加减乘除和求逆) 一.对数函数\(\ln(A)\) 求一个多项式\(B(x)\),满足\(B(x)=\ln(A(x))\). 这里需要一些最基本的微积分知识(不会?戳我(暂时戳不动):[知识总结]微积分初步挖坑待填). 另外,\(n\)次多项式\(A(x)\)可以看成关于\(x\)的\(n\)次函数,可以对其求导.显然,\(A(x)=\sum\limits_{i=0}^{n-1}a_ix^i\)的导数是\(A'(x)=\sum\limits_{i=…
试试以二级标题为主的格式. 多项式相关 注:本篇博客不包含\(FFT\)基础姿势.如果您想要阅读本篇博客,请确保自己对\(FFT,NTT\)有基本的认识并且能够独立写出代码. 多项式是什么? 左转数学七年级上册课本. 多项式的两种表示法 系数表示法和点值表示法,过于基础不多解释. 多项式的四则运算及扩展 多项式加减法 同类项直接进行加减即可,过于简单不多解释. 多项式乘法 朴素算法:\(O(n^2)\). 分治乘法:没写过,不常用,不知道. 快速傅里叶变换(\(FFT\)):\(O(nlogn)…
DP P2723 丑数 Humble Numbers(完成时间:2019.3.1) P2725 邮票 Stamps(完成时间:2019.3.1) P1021 邮票面值设计(完成时间:2019.3.1) P1070 道路游戏(完成时间:2019.3.2) P2558 [AHOI2002]网络传输(完成时间:2019.3.2) blog2(完成时间:2019.3.2) P2831 愤怒的小鸟(完成时间:2019.3.2) P3160 [CQOI2012]局部极小值(完成时间:2019.3.3) P1…
回文串 manacher(完成时间:2018.12.10)回文串计数最长双回文串(完成时间:2018.12.10) 扫描线 棋盘制作巨大的牛棚玉蟾宫某个blog 汉诺塔相关 新汉诺塔SHOI 博弈论 blog1blog2P2197 [模板]nim游戏(完成时间:2018.12.07)P2599 [ZJOI2009]取石子游戏P2575 高手过招 AC自动机 P3808 [模板]AC自动机(简单版)(完成时间:2018.12.06)P3796 [模板]AC自动机(加强版)(完成时间:2018.12…
[WC2019] 数树 Zhang_RQ题解(本篇仅概述) 前言 有进步,只做了半天.... 一道具有极强综合性的数数好题! 强大的多合一题目 精确地数学推导和耐心. 有套路又不失心意. 融合了: 算法: prufer序列及其扩展 树形Dp 容斥或者二项式定理 EGF 多项式Exp 先要会: [学习笔记]prufer序列 [学习笔记]多项式指数函数 [学习笔记]生成函数 luoguP4841 城市规划 省选模拟赛第四轮 B——O(n^4)->O(n^3)->O(n^2) 然后开始刚题. 就是:…
利用MathType编辑公式使得在文档中编辑理工类的论文工作减轻了不少,它所包含的符号与模板基本都可以满足我们日常工作学习中对公式的需要.在文档中编辑数学物理符号或者是函数表达式,都是用word公式编辑器MathType来完成.以我们经常用到的指数为例,来看看MathType指数的编辑方法. 具体操作步骤如下: 1.双击桌面上MathType图标,或者在Word中执行“插入”——“对象”——“MathType Equation 6.0”,或者直接在MathType菜单中使用插入公式命令的方式来打…
2019/4/1 奇奇怪怪的笔记 多项式除法 问题描述 给定\(n\)次多项式\(A(x)\)和\(m\)次多项式\(B(x)\) 求: \[ A(x)=B(x)*C(x)+R(x) \] 我们要求\(C(x)\)的次数必须是\(n-m\),\(R(x)\)的次数小于\(m\) ,所以不能简单地用求逆解决 方法 首先我们考虑: \[ x^nF(\frac{1}{x})=\sum_{i=0}^{n}a_ix^{n-i+1} \] 根据\(A=B*C+R\),我们可以得到: \[ \begin{eq…
Hermite WENO 单元重构 本文主要介绍采用 Hermite WENO 重构方法作为斜率限制器应用于二维或高维单元中. 1.简介[1] ENO格式最早由 Harten 等[2]提出,ENO格式避免在高梯度地区进行插值,其重构过程通过多个不同位置模板,并且选取其中最光滑模板上的解进行重构,由此保证在重构过程中具有较高的精度.然而这种方法会导致收敛问题并且在连续区域降低精度,随后Liu等[3]提出了 weighted ENO 格式.WENO 格式采用不同的权重系数组合各个模板,而非只采用一个…
4725传送门 4726传送门 解析 代码: #include<bits/stdc++.h> #define ri register int using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar(); r…
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.net/leo_h1104/article/details/51615710 题解 不写点什么也不好,我就简单的说一下吧. 我们首先得知道DFT(离散傅里叶变换)和IDFT(逆离散傅里叶变换). 一个多项式有很两种表示方法: 法一:\(f(x)=\sum_{i=0}^n A_i*x^i\) 法二:图像…
基础 很久以前的多项式总结 现在的码风又变了... FFT和NTT的板子 typedef complex<double> C; const double PI=acos(-1); void FFT(C*a,R op){ for(R i=0;i<N;++i) if(i<r[i])swap(a[i],a[r[i]]); for(R i=1;i<N;i<<=1){ C wn=C(cos(PI/i),sin(PI/i)*op),w=1,t; for(R j=0;j<…