Note -「SOS DP」高维前缀和】的更多相关文章

目录 「CF 750E」New Year and Old Subsequence 「洛谷 P4719」「模板」"动态 DP" & 动态树分治 「洛谷 P6021」洪水 「SP 6779」GSS7 「NOIP 2018」「洛谷 P5024」保卫王国 \(\mathcal{Introduction}\) \(\mathcal{Problem~1}\)   给定序列 \(\{a_n\}\),其中 \(a_i\in\mathbb Z\),求其最大子段和(不能为空).   很显然的 DP…
目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 Step 2 证明 代码 「CF 995F」Cowmpany Cowmpensation 题意简述 数据规模 Solution Step 1 Step 2 证明 代码 「CF 662F」The Sum of the k-th Powers 题意简述 数据规模 Solution 代码 「BZOJ 3…
\(\mathcal{Preface}\)   单位根反演,顾名思义就是用单位根变换一类式子的形式.有关单位根的基本概念可见我的这篇博客. \(\mathcal{Formula}\)   单位根反演的公式很简单: \[[k|n]=\frac{1}k\sum_{i=0}^{k-1}\omega_k^{ni} \] \(\mathcal{Proof}\)   分类讨论: \(k|n\). 那么 \((\forall i)(\omega_k^{ni}=1)\),所以右侧为 \(\frac{1}k\su…
目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基础应用 约数个数 欧拉函数 反演魔法 例一 例二 例三 魔法中的 tricks 线性筛 trick 筛 筛 筛 刷表 trick Conclusion   UPD:修改了 Euler 筛法代码框架.   若无特别说明,\(x,y\) 等形式变量均 \(\in\mathbb N_+\):\(p\) 为素数.…
魔法题位面级乱杀. 「JOISC 2020 Day4」治疗计划 因为是不太聪明的 Joker,我就从头开始理思路了.中途也会说一些和 DP 算法本身有关的杂谈,给自己的冗长题解找借口. 首先,治疗方案不会重复使用.因为重复使用只会空加代价,而不会在特定时刻产生额外贡献.故而总决策方案应有 \(2^m\) 个,我们需要在这 \(2^m\) 个中找出最小可能花费. DFS 是最显然的算法,但显然不可做,不过它枚举状态的思路很好地把我们引向了 DP. 于是开始尝试设计 DP 状态. DP 状态定义中,…
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME pre=${name%.*} g++ -O2 $dir/$name -o $pre -g -Wall -std=c++11 if test $? -eq 0; then gnome-terminal -x bash -c "time $dir/$pre;echo;read;" fi*/ #…
[USACO16OPEN]248 G 题目: 题目描述 Bessie likes downloading games to play on her cell phone, even though she doesfind the small touch screen rather cumbersome to use with her large hooves. She is particularly intrigued by the current game she is playing.The…
类型:数位DP 传送门:>Here< 题意:问区间$[n,m]$的数字中,不含4以及62的数字总数 解题思路 数位DP入门题 先考虑一般的暴力做法,整个区间扫一遍,判断每个数是否合法并累计答案.而数位DP则认为可以换一种方法来枚举,找到对于一个数的上限,然后在这个限度内枚举每一个数位来统计答案 为了方便数位DP,题意可以转化求区间$[0, k]$的符合要求的数字总数,因此答案就是$ans(M)-ans(N-1)$ 首先我们可以预处理出dp数组:$dp[i][j]$表示以$j$开头的$i$位数的…
题意与分析 中文题就不讲题意了.我是真的菜,菜出声. 不妨思考一下,限制了我们决策的有哪些因素?一,所在的位置:二,所在的时间.还有吗?没有了,所以设dp[i][j]" role="presentation">dp[i][j]dp[i][j]为第i秒在j处的最大馅饼数,有: dp[i][j]=dp[i][j]=max(dp[i−1][j−1],dp[i−1][j],dp[i−1][j+1])+f[i][j]" role="presentation&q…
题意与分析 学习本题的时候遇到了一定的困难.看了题解才知道这是二重背包.本题的实质是二重完全背包.二维费用的背包问题是指:对于每件物品,具有两种不同的费用,选择这件物品必须同时付出这两种代价:对于每种代价都有一个可付出的最大值(背包容量).问怎样选择物品可以得到最大的价值.设第i件物品的两种代价分别为$a_i$和$b_j$,两种代价可付出的最大值(两种背包容量)分别为$V$和$U$,物品的价值为$w_i$,那么我们可以改进原来的状态转移方程,则定义$dp[i][j][k]$为选前i件物品,前两个…