线性回归 基础知识 实现过程 学习笔记 批量读取 torch_data = Data.TensorDataset(features, labels) dataset = Data.DataLoader(torch_data, batch_size, shuffle=True) 定义模型的两种常见写法 这两种方法是我比较喜欢的方法. 其中有两点需要注意: 虽说他们在定义时,输入和输出的神经元个数是一样的,但print(net)结果是不同的,法二有Sequential外层. 由于第一点的原因,这也导…
softmax和分类模型 内容包含: softmax回归的基本概念 如何获取Fashion-MNIST数据集和读取数据 softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集中的图像数据进行分类的模型 使用pytorch重新实现softmax回归模型 softmax的基本概念 分类问题 一个简单的图像分类问题,输入图像的高和宽均为2像素,色彩为灰度. 图像中的4像素分别记为\(x_1, x_2, x_3, x_4\). 假设真实标签为狗.猫或者鸡,这些标签对应的离散值为…
softmax和分类模型 内容包含: softmax回归的基本概念 如何获取Fashion-MNIST数据集和读取数据 softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集中的图像数据进行分类的模型 使用pytorch重新实现softmax回归模型 **本小节用到的数据下载 1.涉及语句 import d2lzh1981 as d2l 数据1 : d2lzh1981 链接:https://pan.baidu.com/s/1LyaZ84Q4M75GLOO-ZPvPoA…
内容太多,捡重要的讲. 在分类问题中,通常用离散的数值表示类别,这里存在两个问题.1.输出值的范围不确定,很难判断值的意义.2.真实标签是离散值,这些离散值与不确定的范围的输出值之间的误差难以衡量. softmax运算符解决了这两个问题.它把输出值变成了值为正且和为1的概率分布. 对于一个分类问题,假设有a个特征,b个样本,c个输出,单层的全连接网络,那么有a*b个w(权重),c个b(偏差). 为了提升计算效率,常对小批量数据做矢量计算.softmax回归的矢量计算表达式如下. 计算loss用交…
Alink漫谈(十五) :多层感知机 之 迭代优化 目录 Alink漫谈(十五) :多层感知机 之 迭代优化 0x00 摘要 0x01 前文回顾 1.1 基本概念 1.2 误差反向传播算法 1.3 总体逻辑 0x02 训练神经网络 2.1 初始化模型 2.2 压缩数据 2.3 生成优化目标函数 2.4 生成目标函数中的拓扑模型 2.4.1 AffineLayerModel 2.4.2 FuntionalLayerModel 2.4.3 SoftmaxLayerModelWithCrossEntr…
TensorFlow实现多层感知机MINIST分类 TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.使用梯度自动更新用变量定义的张量.本文将使用 TensorFlow 优化器来训练网络. 前面定义了层.权重.损失.梯度以及通过梯度更新权重.用公式实现可以帮助我们更好地理解,但随着网络层数的增加,这可能非常麻烦. 使用 TensorFlow 的一些强大功能,如 Contrib(层)来定义神经网络层及使用 TensorFlow 自带的优化器来计算和使用梯度…
前言 感知器是分类的线性分类模型,其中输入为实例的特征向量,输出为实例的类别,取+1或-1的值作为正类或负类.感知器对应于输入空间中对输入特征进行分类的超平面,属于判别模型. 通过梯度下降使误分类的损失函数最小化,得到了感知器模型. 本节为大家介绍实现感知机实现的具体原理代码: 学习从来不是一个人的事情,要有个相互监督的伙伴,需要学习python或者有兴趣学习python的伙伴可以私信回复QQ:或微信:ff186345,一起学习哦!!!   O(∩_∩)O 运行结果如图所示:…
来自http://deeplearning.net/tutorial/mlp.html#mlp Multilayer Perceptron note:这部分假设读者已经通读之前的一个练习 Classifying MNIST digits using Logistic Regression.(http://blog.csdn.net/shouhuxianjian/article/details/46375461).另外,它使用新的theano函数和概念: T.tanh, shared variab…
隐含层,指除输入.输出层外,的中间层.输入.输出层对外可见.隐含层对外不可见.理论上,只要隐含层节点足够多,只有一个隐含层,神经网络可以拟合任意函数.隐含层越多,越容易拟合复杂函数.拟合复杂函数,所需隐含节点数,随隐含层数量增多指数下降. 过拟合,模型预测准确率在训练集上升,在测试集下降.泛化性不好,模型记忆当前数据特征,不具备推广能力.参数太多.Hinton教授团队,Dropout.随便丢弃部分输出数据节点.创造新随机样本,增大样本量,减少特征数量,防止过拟合.bagging方法,对特征新种采…
一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度学习框架中的sklearn,本文就将基于Keras,以手写数字数据集MNIST为演示数据,对多层感知机(MLP)的训练方法进行一个基本的介绍,而关于多层感知机的相关原理,请移步数据科学学习手札34:https://www.cnblogs.com/feffery/p/8996623.html,本文不再…