hdu6158(圆的反演)】的更多相关文章

hdu6158 题意 初始有两个圆,按照标号去放圆,问放完 \(n\) 个圆后的总面积. 分析 圆的反演的应用. 参考blog 设反演圆心为 \(O\) 和反演半径 \(R\) 圆的反演的定义: 已知一圆 \(C\) ,圆心为 \(O\) ,半径为 \(R\) ,如果 \(P\) 与 \(P'\)在过圆心 \(O\) 的直线上且 \(OP \cdot OP'=R^2\),则称 \(P\) 与 \(P'\) 关于 \(O\) 互为反演点. 有圆的反演的几个性质: 经过\(O\)的圆,反演后成为不经…
题目链接多校8-1009 HDU - 6158 The Designer 题意 T(<=1200)组,如图在半径R1.R2相内切的圆的差集位置依次绘制1,2,3,到n号圆,求面积之和(n<=1e7). 题解 圆的反演: (圆的反演就是半径为R,圆心O的圆为反演中心,点P的反演点就是在射线OP上满足\(|OP'|*|OP|=R^2\)的点P') 设切点为O,以O为圆心半径R的圆为反演点.将圆R1和R2反演得到两条直线,和两条直线相切的圆反演回去的圆就是1-n号圆的圆心. 那么它们的直径就是这些小…
题意:给出两个相离的圆O1,O2和圆外一点P,求构造这样的圆:同时与两个圆相外切,且经过点P,输出圆的圆心和半径 分析:画图很容易看出这样的圆要么存在一个,要么存在两个:此题直接解方程是不容易的,先看看反演的定义:已知一圆C,圆心为O,半径为r,如果P与P'在过圆心O的直线上,且,则称P与P'关于O互为反演. 反演的性质: 首先设出反演圆心O和反演半径R 1.圆外一点P与圆内一点P'会一一对应的反演OP*OP'=R*R 2.经过O的圆,反演后成为不经过O的一条直线 3.不经过O的圆,反演后成为另…
BUPT2017 wintertraining(15) #5G HDU - 4773 - 2013 Asia Hangzhou Regional Contest problem D 题意 给定两个相离的圆,和一个圆外的点P,求过该点和两个圆都外切的圆. 题解 直接求解联立的方程组不太可行.需要用一个黑科技--圆的反演. 什么是圆的反演呢? 假设定圆的圆心为O,半径是R,线段OP上的点P'满足\(|OP|\cdot|OP'|=R^2\),则称P'是P关于定圆O的反演. 反演的性质: 不通过O的直线…
Nowadays, little haha got a problem from his teacher.His teacher wants to design a big logo for the campus with some circles tangent with each other. And now, here comes the problem. The teacher want to draw the logo on a big plane. You could see the…
Pick定理.欧拉公式和圆的反演 Tags:高级算法 Pick定理 内容 定点都是整点的多边形,内部整点数为\(innod\),边界整点数\(ednod\),\(S=innod+\frac{ednod}{2}-1\) 证明 把每个整点近似地看成一个圆,那么多边形内部的整点所代表的圆全部被算入 多边形边界上的圆被算了一半 顶点上被算了\(\sum 半圆-外角\),外角和360度,于是\(-1\) 应用 POJ2954 求格点三角形内部点数 欧拉公式 内容 \[V-E+F=2\] \(V:verte…
HOJ 13102 Super Shuttle 链接:http://49.123.82.55/online/?action=problem&type=show&id=13102 题意:给定一个点 p 和 n 个圆,做某个经过点 p的 圆穿过尽可能多的圆,问可穿过最多的圆是多少. 思路:圆的反演变换: 给出反演极O和反演幂k>0,作点A的反演点A′. 令k=r^2,作出反演基圆⊙O(r), 1)若点A在⊙O(r)外,则过点A作圆的切线(两条),两个切点相连与OA连线交点就是点A′. 2…
题面 传送门 这题有两种方法(然而两种我都想不到) 方法一 前置芝士 笛卡尔定理 我们定义一个圆的曲率为\(k=\pm {1\over r}\),其中\(r\)是圆的半径 若在平面上有两两相切,且六个切点互不相同的四个圆,设其曲率分别为\(k1,k2,k3,k4\)(若该圆和其它所有圆都外切,则其曲率取正,否则曲率取负),则有 \[(k1+k2+k3+k4)^2=2(k1^2+k2^2+k3^2+k4^2)\] 类似的,若是空间中有两两相切且切点互不相同的五个球体,则有 \[(k1+k2+k3+…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6097 题意:有一个圆心在原点的圆,给定圆的半径,给定P.Q两点坐标(PO=QO,P.Q不在圆外),取圆上一点D,求PD+QD的最小值. 解法:圆的反演. 很不幸不总是中垂线上的点取到最小值,考虑点在圆上的极端情况. 做P点关于圆的反演点P',OPD与ODP'相似,相似比是|OP| : r. Q点同理. 极小化PD+QD可以转化为极小化P'D+Q'D. 当P'Q'与圆有交点时,答案为两点距离,否则最优…
参考: https://oi-wiki.org/geometry/inverse/ https://blog.csdn.net/acdreamers/article/details/16966369 https://jingyan.baidu.com/article/77b8dc7f8a792e6174eab623.html 知识点:圆的反演 反演中心 O,半径R,若 P 与 P' 满足: 点 \(P'\) 在射线\(\overrightarrow {OP}\)上 \(|OP|\cdot |OP…
地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6158 题目: The Designer Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1381    Accepted Submission(s): 289 Problem Description Nowadays, little …
Mindis Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 2787    Accepted Submission(s): 555Special Judge Problem Description The center coordinate of the circle C is O, the coordinate of O is (0,…
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. \(1 \leq T \leq 10^4\),\(1 \leq n,m \leq 10^7\). 今天终于学会了莫比乌斯反演反演~~,就写篇博客加深下印象吧. 要说这莫比乌斯反演有多么博大精深,就不得不从莫比乌斯函数 \(\mu(x)\) 说起. 我们定义 \(\mu(x)\) 为: \[\mu(…
题意 给定相离的两个圆(圆心坐标以及半径)以及圆外的一个定点\(P\),求出过点\(P\)的且与已知的两个圆外切的所有圆(输出总数+圆心.半径). 分析 如果强行解方程,反正我是不会. 本题用到新姿势:圆的反演. 二维上的圆的反演通常是指定一个圆\(C\)为基础,其圆心\(O\)为反演中心,其半径\(r\)为反演半径.对于平面上任意一个非反演中心的点\(P\),都有且仅有一个反演点\(P'\),满足\(OP \cdot OP' = r^2\)且\(P'\)在\(OP\)射线上.对于任意一个二维上…
莫名其妙就AC了-- 圆的反演-- 神马是反演? 快去恶补奥数-- #include<iostream> #include<map> #include<string> #include<cstring> #include<cstdio> #include<cstdlib> #include<cmath> #include<queue> #include<vector> #include<alg…
[ZJOI2018]保镖 Tags:题解 题意 链接 初始在平面上有一些点,九条可怜随机出现在一个矩形内的任意一点.若九条可怜出现在\(O\)点,则平面上所有的点都从\(P_i\)移动到\(P'_i\),使得\(P'_i\)在射线\(OP_i\)上,且满足\(|OP_i|*|OP'_i|=1\).现在给定矩形范围,求这些点移动后所构成的凸包的期望点数. \(n\le 2000,x,y\le 10^5\),精度要求绝对误差或相对误差不超过\(10^{-7}\). 题解 前言 神仙不可做题终于被杠下…
地址:https://nanti.jisuanke.com/t/17314 题目: Three circles C_{a}C​a​​, C_{b}C​b​​, and C_{c}C​c​​, all with radius RR and tangent to each other, are located in two-dimensional space as shown in Figure 11. A smaller circle C_{1}C​1​​ with radius R_{1}R​1…
地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6206 题目: Apple Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 530    Accepted Submission(s): 172 Problem Description Apple is Taotao's favouri…
题意:给一个圆C和圆心O,P.Q是圆上或圆内到圆心距离相等的两个点,在圆上取一点D,求|PD| + |QD|的最小值 析:首先这个题是可以用三分过的,不过也太,.... 官方题解: 很不幸不总是中垂线上的点取到最小值,考虑点在圆上的极端情况. 做P点关于圆的反演点P',OPD与ODP'相似,相似比是|OP| : r. Q点同理. 极小化PD+QD可以转化为极小化P'D+Q'D. 当P'Q'与圆有交点时,答案为两点距离,否则最优值在中垂线上取到. 时间复杂度 O(1)O(1) 也有代数做法,结论相…
题面 传送门 题解 我对计蒜几盒一无所知 顺便\(xzy\)巨巨好强 前置芝士 三维凸包 啥?你不会三维凸包?快去把板子写了->这里 欧拉公式 \[V-E+F=2\] \(V:vertex\)顶点,\(E:edge\)边,\(F:flat\)面,对所有维度的所有多边形(多面体)都成立 圆的反演 设反演中心为\(O\),常数为\(k\),若经过\(O\)的直线经过\(P,P'\),且\(OP\times OP'=k\),则称\(P,P'\)关于\(O\)互为反演,其中\(O\)为反演中心,\(k\…
Apple Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 982    Accepted Submission(s): 323 Problem Description Apple is Taotao's favourite fruit. In his backyard, there are three apple trees with…
网络流√ 上下界最大流√ 线性规划转费用流√ RMQ优化建图√ 单纯形√ 字符串相关 hash√ 扩展KMP 回文自己主动机 数据结构 平衡树 启示式合并 替罪羊树 LCT 树套树 KD-Tree 二分答案 分数规划√ 贪心 动态规划 斜率优化√ 数位DP√ 概率DP√ 插头DP 图论 差分约束√ floyd求最小环√ 连通分量相关√ 强连通分量√ 点双连通分量√ 边双连通分量√ 割点√ 割边√ 最小生成树√ Matrix-Tree定理√ 斯坦纳树√ 最小树形图√ 树上问题 Prufer序列 认…
转载于http://blog.csdn.net/creationaugust/article/details/513876231000:A+B 1001:平面图最小割,转对偶图最短路 1002:矩阵树定理,也可以通过推矩阵的递推关系得到递推式 1003:最短路+DP 1007:半平面交 1008:组合数学,需要高精 1010:斜率优化/四边形不等式推决策单调性 1012:线段树 1014:Splay维护字符串的Hash值 1016:矩阵树定理,相同权值压联通块,对一个联通块用一次矩阵树定理计算方…
Day_6 计算几何 点积\Large 点积点积 叉积\Large 叉积叉积 极角\Large 极角极角 < π\piπ :叉积判断 else :atan2 旋转\Large 旋转旋转 左乘第一类正交矩阵 [cos θ−sin θsin θcos θ][cos ωsin ω]=[cos θ cos ω−sin θ sin ωsin θ cos ω+cos θ sin ω]=[cos(θ+ω)sin(θ+ω)]\left[ \begin{array}{} cos\ \theta & -sin\…
目录 语法 c++ java 动态规划 多重背包 最长不下降子序列 计算几何 向量(结构体) 平面集合基本操作 二维凸包 旋转卡壳 最大空矩形 | 扫描法 平面最近点对 | 分治 最小圆覆盖 | 随机增量法 三维向量(结构体) 三维凸包 几何杂项 数据结构 ST表 单调队列 树状数组 线段树 并查集 左偏树 珂朵莉树,老司机树 莫队 二叉搜索树 一些建议 图论 图论的一些概念 图论基础 最短路径 最小生成树 树论的一些概念 最近公共祖先 联通性相关 图上的NP-hard问题 弦图+区间图 | 最…
题目链接:https://cn.vjudge.net/problem/HDU-6097 知识点: 计算几何.圆的反演 题目大意: 已知一个圆心在原点的圆的半径,再给定 \(P, Q\) 两点坐标( \(PO=QO\),\(P, Q\) 不在圆外),在圆上取一点 \(D\),求 \(PD+QD\) 的最小值. 解题思路: 首先,\(P, Q\) 两点重合的情况要特判: 其次,\(P, Q\) 在圆上的情况也要特判(将 \(D\) 点放在 \(P\) 或 \(Q\) 点上即可,答案为 \(|PQ|\…
题意:给你三个半径相同的圆,它们切在一起,然后让你往缝里一个一个地塞圆,问你塞到第k个的半径是多少. 就把上面那两个圆的切点当成反演中心,然后会反演成这个样子,两个平行直线和一个圆. 然后就是往那个圆上面再塞圆,然后反演回去算面积就行了. #include<cstdio> #include<cmath> using namespace std; const double pi=3.14159; int n,K; double R,anss[12]; int main(){ //fr…
给你一个中心在原点的圆,再给你俩在圆内且到原点距离相等的点P,Q,让你在圆上求一点D,最小化DP+DQ. http://blog.csdn.net/qq_34845082/article/details/77099332 附:过反演中心的圆反演后变成一条和该圆正交的直线. 不过反演中心的圆反演后是一个与原圆关于反演中心位似的圆. 不过反演中心的直线反演后变成一个过反演中心且与其正交的圆. #include<cstdio> #include<cmath> using namespac…
仙人掌 && 圆方树 && 虚树 总结 Part1 仙人掌 定义 仙人掌是满足以下两个限制的图: 图完全联通. 不存在一条边处在两个环中. 其中第二个限制让仙人掌的题做起来十分舒服. 仙人掌的基环DP 首先勾出一棵有根生成树. 那么树边上正常转移即可. 我们把返祖边形成的环归到环上深度最浅的点上,即环顶. 那么到环顶时,单独跑一遍关于环的\(DP\)即可. 一般写法为: void dfs(RG int u,RG int From) { dfn[u] = low[u] = +…
1.多项式的两种表示法 1.系数表示法 我们最常用的多项式表示法就是系数表示法,一个次数界为\(n\)的多项式\(S(x)\)可以用一个向量\(s=(s_0,s_1,s_2,\cdots,s_n-1)\)系数表示如下:\[S(x)=\sum_{k=0}^{n-1}s_kx^k\] 系数表示法很适合做加法,可以在\(O(n)\)的时间复杂度内完成,表达式为:\[S(x)=A(x)+B(x)=\sum_{k=0}^{n-1}(a_k+b_k)x^k\] 当中\[s_k=a_k+b_k\] 但是,系数…