scikit-learn和tensorflow的区别】的更多相关文章

Voting classifier 多种分类器分别训练,然后分别对输入(新数据)预测/分类,各个分类器的结果视为投票,投出最终结果: 训练: 投票: 为什么三个臭皮匠顶一个诸葛亮.通过大数定律直观地解释: 一个硬币P(H)=0.51.大数定律保证抛硬币很多次之后,平均得到的正面频数接近\(0.51 \times N\),并且N越大,越接近.那么换个角度,N表示同时掷硬币的人数,即为这边的N个臭皮匠,他们的结果合到一起就得到的是接近真实结果的值. 进一步根据中心极限定理,即二项分布以正态分布为其极…
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk…
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉验证 交叉验证用于评估模型性能和进行参数调优(模型选择).分类任务中交叉验证缺省是采用StratifiedKFold. sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jo…
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 载入…
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.…
Pytorch和TensorFlow的区别 目录 引言 pytorch和tensorflow的功能 torch和tf的区别 torch tf Torch和tf到底用哪个 总结 引言 在这里,我们长话短说,短话简说,抱歉,还是说了这么多废话,两年多没有正式写技术博客了,有点兴奋又有点伤感,那就正式开始吧. 话说在某某年有人发明了人工智能这个专业术语,因此后来者想要达到这个人说的人工智能的那种状态.当然了,你可以把人工智能弱智的理解成机器人这种啦,当然咯,目前这还是很难实现的,我们就说两个现在大多数…
1.功能不同 Scikit-learn(sklearn)的定位是通用机器学习库,而TensorFlow(tf)的定位主要是深度学习库.一个显而易见的不同:tf并未提供sklearn那种强大的特征工程,如维度压缩.特征选择等.究其根本,我认为是因为机器学习模型的两种不同的处理数据的方式: 传统机器学习:利用特征工程(feature engineering),人为对数据进行提炼清洗 深度学习:利用表示学习(representation learning),机器学习模型自身对数据进行提炼 sklear…
scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习问题一般可以分为: 监督学习(supervised learning) 分类(classification) 回归(regression) 非监督学习(unsupervised learning) 聚类(clustering) 监督学习和非监督学习的区别就是,监督学习中,样本数据会包含要预测的标签(…
Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-learn with python. Following is the package version that I use below: The Python version: 3.6.2 The Numpy version: 1.8.0rc1 The Scikit-Learn version: 0.19…