从头学pytorch(二十):残差网络resnet】的更多相关文章

残差网络ResNet resnet是何凯明大神在2015年提出的.并且获得了当年的ImageNet比赛的冠军. 残差网络具有里程碑的意义,为以后的网络设计提出了一个新的思路. googlenet的思路是加宽每一个layer,resnet的思路是加深layer. 论文地址:https://arxiv.org/abs/1512.03385 论文里指出,随着网络深度的增加,模型表现并没有更好,即所谓的网络退化.注意,不是过拟合,而是更深层的网络即便是train error也比浅层网络更高. 这说明,深…
DenseNet 论文传送门,这篇论文是CVPR 2017的最佳论文. resnet一文里说了,resnet是具有里程碑意义的.densenet就是受resnet的启发提出的模型. resnet中是把不同层的feature map相应元素的值直接相加.而densenet是将channel维上的feature map直接concat在一起,从而实现了feature的复用.如下所示: 注意,是连接dense block内输出层前面所有层的输出,不是只有输出层的前一层 网络结构 首先实现DenseBl…
PyTorch提供的autograd包能够根据输⼊和前向传播过程⾃动构建计算图,并执⾏反向传播. Tensor Tensor的几个重要属性或方法 .requires_grad 设为true的话,tensor将开始追踪在其上的所有操作 .backward()完成梯度计算 .grad属性 计算的梯度累积到.grad属性 .detach()解除对一个tensor上操作的追踪,或者用with torch.no_grad()将不想被追踪的操作代码块包裹起来. .grad_fn属性 该属性即创建Tensor…
引言 对于传统的深度学习网络应用来说,网络越深,所能学到的东西越多.当然收敛速度也就越慢,训练时间越长,然而深度到了一定程度之后就会发现越往深学习率越低的情况,甚至在一些场景下,网络层数越深反而降低了准确率,而且很容易出现梯度消失和梯度爆炸. 这种现象并不是由于过拟合导致的,过拟合是在训练集中把模型训练的太好,但是在新的数据中表现却不尽人意的情况.从上图可以看出,我们的训练准误差和测试误差在层数增加后皆变大了,这说明当网络层数变深后,深度网络变得难以训练. 如果大家还没理解的话,那我讲细一点,网…
深度学习--手动实现残差网络 辛普森一家人物识别 目标 通过深度学习,训练模型识别辛普森一家人动画中的14个角色 最终实现92%-94%的识别准确率. 数据 ResNet介绍 论文地址 https://arxiv.org/pdf/1512.03385.pdf 残差网络(ResNet)是微软亚洲研究院的何恺明.孙剑等人2015年提出的,它解决了深层网络训练困难的问题.利用这样的结构我们很容易训练出上百层甚至上千层的网络. 残差网络的提出,有效地缓解了深度学习两个大问题 梯度消失:当使用深层的网络时…
深度残差网络—ResNet总结 写于:2019.03.15—大连理工大学 论文名称:Deep Residual Learning for Image Recognition 作者:微软亚洲研究院的何凯明等人             论文地址:https://arxiv.org/pdf/1512.03385v1.pdf 摘要: 随着人们对于神经网络技术的不断研究和尝试,每年都会诞生很多新的网络结构或模型.这些模型大都有着经典神经网络的特点,但是又会有所变化.你说它们是杂交也好,是变种也罢,总之针对…
写在前面 ​ 深度残差网络(Deep residual network, ResNet)自提出起,一次次刷新CNN模型在ImageNet中的成绩,解决了CNN模型难训练的问题.何凯明大神的工作令人佩服,模型简单有效,思想超凡脱俗. ​ 直观上,提到深度学习,我们第一反应是模型要足够"深",才可以提升模型的准确率.但事实往往不尽如人意,先看一个ResNet论文中提到的实验,当用一个平原网络(plain network)构建很深层次的网络时,56层的网络的表现相比于20层的网络反而更差了.…
opencv中提供的基于haar特征级联进行人脸检测的方法效果非常不好,本文使用dlib中提供的人脸检测方法(使用HOG特征或卷积神经网方法),并使用提供的深度残差网络(ResNet)实现实时人脸识别,不过本文的目的不是构建深度残差网络,而是利用已经训练好的模型进行实时人脸识别,实时性要求一秒钟达到10帧以上的速率,并且保证不错的精度.opencv和dlib都是非常好用的计算机视觉库,特别是dlib,前面文章提到了其内部封装了一些比较新的深度学习方法,使用这些算法可以实现很多应用,比如人脸检测.…
发现博客园也可以支持Markdown,就把我之前写的博客搬过来了- 欢迎转载,请注明出处:http://www.cnblogs.com/alanma/p/6877166.html 下面是正文: Deep Residual Learning for Image Recognition 1. 思想 作者根据输入将层表示为学习残差函数.实验表明,残差网络更容易优化,并且能够通过增加相当的深度来提高准确率. 核心是解决了增加深度带来的副作用(退化问题),这样能够通过单纯地增加网络深度,来提高网络性能.…
跟着Dive-into-DL-PyTorch.pdf从头开始学pytorch,夯实基础. Tensor创建 创建未初始化的tensor import torch x = torch.empty(5,3) print(x) 输出 tensor([[ 2.0909e+21, 3.0638e-41, -2.4612e-30], [ 4.5650e-41, 3.0638e-41, 1.7753e+28], [ 4.4339e+27, 1.3848e-14, 6.8801e+16], [ 1.8370e+…