poj 2229 【完全背包dp】【递推dp】】的更多相关文章

题意 : 给出一个数 n ,问如果使用 2 的幂的和来组成这个数 n 有多少种不同的方案? 分析 :  完全背包解法 将问题抽象==>有重量分别为 2^0.2^1.2^2…2^k 的物品且每种物品可无限取,问有多少种方案来填满容量为 n 的背包? 之前并不知道背包还能用来计数....... 有一道裸的背包计数问题可以作为练习 ==> HDU 1284 定义 dp[ i ][ j ] 为前 i 种物品组成总重量 j 的方案数为多少.初始化为 dp[ 0 ][ 0 ] = 1 其他为 0 则状态转…
http://codeforces.com/problemset/problem/118/D 设dp[i][j][k1][k2] 表示,放了i个1,放了j个2,而且1的连续个数是k1,2的连续个数是k2 如果这样写,用dfs写是很简单的.但是超时,我记忆化不到 如果用递推写,对于每一个状态,更新到下一个状态. 如果放的是1,那么新的状态是dp[i + 1][j][k1 + 1][0]也就是,用多了一个1,而且连续的个数也增加了.同时,2的连续个数就打破了,变成了0 这种枚举旧状态,更新下一个状态…
poj 2229 Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 21281   Accepted: 8281 Description Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an…
题目传送门 题意:k个马棚,n条马,黑马1, 白马0,每个马棚unhappy指数:黑马数*白马数,问最小的unhappy值是多少分析:dp[i][j] 表示第i个马棚放j只马的最小unhappy值,状态转移方程:dp[i][j] = min (dp[i][j], dp[i-1][k-1] + cur * (j - k + 1 - cur)); 表示k到j匹马放在第i个马棚的最小unhappy值,dp[0][0] = 0.由于黑马数是1的和,前缀sum[i]表示前i匹马黑马的个数,白马就是总个数-…
题目传送门 /* 题意:给n块砖头,问能组成多少个楼梯,楼梯至少两层,且每层至少一块砖头,层与层之间数目不能相等! 递推DP:dp[i][j] 表示总共i块砖头,最后一列的砖头数是j块的方案数 状态转移方程:dp[i][j] += dp[i-j][k] 表示最后一列是j,那么上一个状态是少了最后一列 总共i-j块砖头,倒数第二列是k块砖头.k<j, j<=i 最后累加dp[n][i], i<n因为最少要两层 dp[0][0] = 1; 还有更简单的做法,没看懂:http://m.blog…
题目传送门 /* 递推DP: dp[i] 表示放i的方案数,最后累加前n-2的数字的方案数 */ #include <cstdio> #include <algorithm> #include <cmath> #include <cstring> using namespace std; ; const int INF = 0x3f3f3f3f; ]; int main(void) //URAL 1260 Nudnik Photographer { //fr…
题目传送门 /* 题意:1~1e9的数字里,各个位数数字相加和为s的个数 递推DP:dp[i][j] 表示i位数字,当前数字和为j的个数 状态转移方程:dp[i][j] += dp[i-1][j-k],为了不出现负数 改为:dp[i][j+k] += dp[i-1][j] */ #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <str…
题目传送门 /* 题意:已知起点(1,1),终点(n,m):从一个点水平或垂直走到相邻的点距离+1,还有k个抄近道的对角线+sqrt (2.0): 递推DP:仿照JayYe,处理的很巧妙,学习:) 好像还要滚动数组,不会,以后再补 */ #include <cstdio> #include <iostream> #include <algorithm> #include <cmath> #include <cstring> using names…
题目传送门 /* 递推DP:官方题解 令Fi,j代表剩下i个人时,若BrotherK的位置是1,那么位置为j的人是否可能获胜 转移的时候可以枚举当前轮指定的数是什么,那么就可以计算出当前位置j的人在剩下i − 1个人时的位置 (假设BrotherK所处的位置是1),然后利用之前计算出的F值判定此人是否可能获胜 时间复杂度为O(n3) dp[i][j] 表示有i个人,j位置的人是否可能胜利.dp[1][0] = 1; cnt = sum (dp[n][i]); 有最优化子结构,i个人可以由i-1个…
题目传送门 /* 递推DP: 如果a, b, c是等差数列,且b, c, d是等差数列,那么a, b, c, d是等差数列,等比数列同理 判断ai-2, ai-1, ai是否是等差(比)数列,能在O(n)时间求出最长的长度 */ #include <cstdio> #include <algorithm> #include <cstring> #include <cmath> using namespace std; typedef long long ll…