Solution 这是一道好题. 考虑球体的体积是怎么计算的: 我们令\(f_k(r)\)表示\(x\)维单位球的体积, 则 \[ f_k(1) = \int_{-1}^1 f_{k - 1}(\sqrt{1 - r^2}) dr \] 然而\(f_{k - 1}(\sqrt{1 - x^2})\)并不容易处理, 我们又注意到\(k\)维球体的体积可以表示为\(a \pi r^k\), 因此\(f_k(\sqrt{1 - r^2}) = f_k(1) \times (1 - r)^{\frac…
Solution 这题实际上并不是构造题, 而是一道网络流. 我们考虑题目要求的一条路径应该是什么样子的: 它是一个环, 并且满足每个点有且仅有一条出边, 一条入边, 同时这两条边的权值还必须不一样. 考虑如何建图: 我们对每个景点分别建一个点, 源点连向左岸的景点, 右岸的景点连向汇点, 边的容量都是2, 这限制了一个点最多只能连两条边; 我们再将一个点拆成\(k\)个, 每个代表一个连入的边的权值, 也就是说对于连入一个点的所有边, 都连在代表该边的权值的点上; 一个景点与其拆成的\(k\)…
Solution 这道题告诉我们, 不能看着数据范围来推测正解的时间复杂度. 事实证明, 只要常数足够小, \(5 \times 10^6\)也是可以跑\(O(n \log n)\)算法的!!! 这道题有两种思路. 比较容易想到的(也是我考场上想的)一种是: 把所有任务按照权值从大到小排序, 从权值大的开始安排, 将其安排在尽可能靠后的位置; 假如位置不够, 安排不下, 则可停止. 但这样非常难统计答案, 我想到的做法是用线段树的分裂与合并来维护整个区间. 但考虑到时间复杂度以及常数大小, 还是…
Solution 最小割. 参考BZOJ 3144切糕 在那道题的基础上将建图方法稍作变形: 我们对格子进行黑白染色, 对于两个格子之和\(\le k\)的限制, 就可以确定其中一个是白色格子, 一个是黑色格子. 我们让黑色格子和白色格子的点的顺序相反, 就可以表示限制了. 目前的代码还是WA的. #include <cstdio> #include <cctype> #include <vector> #include <deque> #include &…
Solution 观察冒泡排序的过程. 我们注意到, 每一轮的排序都会使得每个数后面比它小的数的个数减\(1\). 我们用\(f(n, m)\)表示对\(1\)到\(n\)的一个排列进行冒泡排序, 满足在不超过\(m\)轮内完成的排列数量. 易知 \[ f(n, m) = \begin{cases} m! \\ m! (m + 1)^{n - m} \end{cases} \] 我们再用\(g(n, m)\)表示对\(n\)个数的排列进行冒泡排序, 使得排序过程恰好\(m\)轮完成的排列数量,…
Description  Special Judge Hint 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. 题解 题目大意:给定两组点,每组有$n$个点,有若干条跨组的有色无向边.求一种方案,包括若干个不相交的连通块,覆盖全部点,每个连通块满足能一笔画(不经过重复的点)并且相邻两次经过的边颜色不相同(开头和结尾经过的边也不能相同). 是不是有点类似二分图匹配的问题呢?我们还是考虑用最大流来建图. 一笔画的时候,每一个经过的点有且只有一条入边,有且只有一条出边,即…
Solution 线段树好题. 我们考虑用last[i]表示\(i\)这个位置的颜色的上一个出现位置. 考虑以一个位置\(R\)为右端点的区间最远能向左延伸到什么位置: \(L = \max_{i \le j} last[j]\). 而我们的答案就等于 \[ sum_{i = 1}^n (i - (max_{1 \le j \le i} last[j])) = \sum_{i = 1}^n i - \sum_{i = 1}^n max_{1 \le j \le i} last[j] \] 第一项…
Solution 好题, 又是长链剖分2333 考虑怎么统计答案, 我场上的思路是统计以一个点作为结尾的最长上升链, 但这显然是很难处理的. 正解的方法是统计以每个点作为折弯点的最长上升链. 具体的内容题解已经写得很详细了, 直接看题解吧: 线性的LIS的经典做法:从左往右扫并维护f[x]表示当前长为x的LIS的最后一个数最小是多少,易证f[x]必定递增,每次新加一个数y,则在f中二分查找最小的x使得f[x]>=y,若找到则将f[x]设为y,否则在f末尾加上y.最后f的长度即为答案. 答案一定是…
Solution 相当于要你计算这样一个式子: \[ \sum_{x = 0}^m \left( \begin{array}{} m \\ x \end{array} \right) \left( \begin{array}{} k \\ n - m + 2x \end{array}{} \right) \] 考虑到\(m\)非常大, 而\(k\)却比较小, 我们尝试将\(x\)的\(m\)相关转化为\(k\)相关. 我们用如下现实意义来考虑: 令\(N = n - m\), 则我们相当于有两堆…
Solution 这题的解法很妙啊... 考虑这三个点可能的形态: 令它们的重心为距离到这三个点都相同的节点, 则其中两个点分别在重心的两棵子树中, 且到重心的距离相等; 第三个点可能在重心的一棵不同于前两个点子树上, 也有可能在重心往上走可以到达的位置上. 定义数组\(f[i][j]\)表示在以\(i\)为根的子树下与\(i\)的距离为\(j\)的节点个数; \(g[i][j]\)表示在以\(i\)为根的子树下, 有多少个点对满足如下条件: 这个点对到它们LCA的距离相同, 我们假设其为\(d…