Gradient Descent 梯度下降 II 关于 Gradient Descent 的直观解释,参考上一篇博客[机器学习]梯度下降 I 本模块介绍几种梯度下降模型.定义符号标记如下: \(\theta_t\):第 t 步的参数 \(\nabla L(\theta_t)\) or \(g_t\):\(\theta_t\)的梯度 \(m_{t+1}\):从 0 时刻开始累积的动量 SGD \(\theta_{t+1} = \theta_t - \eta\nabla L(\theta_t)\)…
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 项目合作联系QQ:231469242 http://scikit-learn.org/stable/modules/sgd.html Stochasti…
一.梯度 导数是对某个自变量求导,得到一个标量. 偏微分是在多元函数中对某一个自变量求偏导(将其他自变量看成常数). 梯度指对所有自变量分别求偏导,然后组合成一个向量,所以梯度是向量,有方向和大小. 上左图中,箭头的长度表示陡峭度,越陡峭的地方箭头越长,箭头指向的方向是y变大的方向,如果要使用梯度下降,则需要取负方向. 右图中,蓝色代表低点,红色代表高点,中间的箭头方向从蓝色指向红色,而且中间最陡峭的地方,箭头最长. 二.梯度下降 上图中分别使用梯度下降优化θ1和θ2的值,α表示学习率,即每次按…
for iter = 1:num_iters %梯度下降 用户向量 for i = 1:m %返回有0有1 是逻辑值 ratedIndex1 = R_training(i,:)~=0 ; %U(i,:) * V' 第i个用户分别对每个电影的评分 %sumVec1 第i个用户分别对每个电影的评分 减去真实值 sumVec1 = ratedIndex1 .* (U(i,:) * V' - R_training(i,:)); product1 = sumVec1 * V; derivative1 =…
本章节主要讲怎么确定梯度下降的工作是正确的,第二是怎么选择学习率α,如下图所示: 上图显示的是梯度下降算法迭代过程中的代价函数j(θ)的值,横轴是迭代步数,纵轴是j(θ)的值 如果梯度算法正常工作,那么每一步迭代之后,那么j(θ)值应该是每一次迭代后都会相应降低,曲线的用处在于告诉你迭代到哪一步之后,已经收敛了,比如上图迭代到400次之后,j(θ)值基本就收敛了,因为迭代函数并没有随着迭代次数降低. 另外一个方法,叫自动收敛测试,也可以很好的判断梯度下降是否已经达到了收敛,比如j(θ)值在每一步…
以房屋价格为例,假设有两个特征向量:X1:房子大小(1-2000 feets), X2:卧室数量(1-5) 关于这两个特征向量的代价函数如下图所示: 从上图可以看出,代价函数是一个又瘦又高的椭圆形轮廓图,如果用这个代价函数来运行梯度下降的话,得到最终的梯度值,可能需要花费很长的时间,甚至可能来回震动,最终才能收敛到全局最小值.为了减少梯度下来花费的时间,最好的办法就是对特征向量进行缩放(feature scaling). 特征向量缩放(feature scaling):具体来说,还是以上面的房屋…
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了.其中m是训练集的记录条数,i是参数的个数. 1.批量梯度下降的求解思路如下: (1)将J(theta)对theta求偏导,得到每个theta对应的的梯度 (2)由于是…
上一篇我们实现了使用梯度下降法的自适应线性神经元,这个方法会使用所有的训练样本来对权重向量进行更新,也可以称之为批量梯度下降(batch gradient descent).假设现在我们数据集中拥有大量的样本,比如百万条样本,那么如果我们现在使用批量梯度下降来训练模型,每更新一次权重向量,我们都要使用百万条样本,训练时间很长,效率很低,我们能不能找到一种方法,既能使用梯度下降法,但是又不要每次更新权重都要使用到所有的样本,于是随机梯度下降法(stochastic gradient descent…
Support vector machines 支持向量机,简称SVM 分类算法的目的是学会一个分类函数或者分类模型(分类器),能够把数据库中的数据项映射给定类别中的某一个,从而可以预测未知类别. SVM是一种监督式学习的方法. 支持向量:支持或支撑平面上把两类类别划分开来的超平面的向量点 机:就是算法,机器学习常把一些算法看作是一个机器 SVM 其实就是一种很有用的二分类方法. 超平面: n维空间中, 满足n元一次方程a1x1+a2x2+...+anxn=b的点(x1,x2,...,xn)的全…
二维数组和一位数组类似. 定义: 数据类型 数组名[行][列]={{ },{ }....}; 定义时,一维(行)的长度可以省略,但是二维(列)的长度不可以省略.但是访问时,一定使用双下标. 二维数组的元素个数=行数*列数 主要运用:二维数组的遍历. 使用for循环的嵌套. 版权声明:本文为博主原创文章,未经博主允许不得转载.…