实时计算 Flink 版总体介绍】的更多相关文章

Flink产品介绍 目前实时计算的产品已经有两种模式,即共享模式和独享模式.这两种模式都是全托管方式,这种托管方式下用户不需要关心整个集群的运维.其次,共享模式和独享模式使用的都是Blink引擎.这两种模式为用户提供的主要功能也类似, 都提供开发控制台: 开发使用的都是Blink SQL,其中独享模式由于进入了用户的VPC,部署在用户的ECS上,因此可以使用很多底层的API,如UDX: 都提供一套的开箱即用的metric收集.展示功能: 都提供作业监控和报警功能. 最后,在收费模式上,共享模式和…
Flink对于流处理架构的意义十分重要,Kafka让消息具有了持久化的能力,而处理数据,甚至穿越时间的能力都要靠Flink来完成. 在Streaming-大数据的未来一文中我们知道,对于流式处理最重要的两件事,正确性,时间推理工具.而Flink对两者都有非常好的支持. Flink对于正确性的保证 对于连续的事件流数据,由于我们处理时可能有事件暂未到达,可能导致数据的正确性受到影响,现在采取的普遍做法的通过高延迟的离线计算保证正确性,但是也牺牲了低延迟. Flink的正确性体现在计算窗口的定义符合…
随着大数据的发展,人们对大数据的处理要求也越来越高,原有的批处理框架MapReduce适合离线计算,却无法满足实时性要求较高的业务,如实时推荐.用户行为分析等. Spark Streaming是建立在Spark上的实时计算框架,通过它提供的丰富的API.基于内存的高速执行引擎,用户可以结合流式.批处理和交互试查询应用.本文将详细介绍Spark Streaming实时计算框架的原理与特点.适用场景. Spark Streaming实时计算框架 Spark是一个类似于MapReduce的分布式计算框…
1. 完成的场景 在很多大数据场景下,要求数据形成数据流的形式进行计算和存储.上篇博客介绍了Flink消费Kafka数据实现Wordcount计算,这篇博客需要完成的是将实时计算的结果写到redis.当kafka从其他端获取数据立刻到Flink计算,Flink计算完后结果写到Redis,整个过程就像流水一样形成了数据流的处理 2. 代码 添加第三方依赖 <dependencies> <!-- https://mvnrepository.com/artifact/org.apache.fl…
1. Flink Flink介绍: Flink 是一个针对流数据和批数据的分布式处理引擎.它主要是由 Java 代码实现.目前主要还是依靠开源社区的贡献而发展.对 Flink 而言,其所要处理的主要场景就是流数据,批数据只是流数据的一个极限特例而已.再换句话说,Flink 会把所有任务当成流来处理,这也是其最大的特点.Flink 可以支持本地的快速迭代,以及一些环形的迭代任务. Flink的特性: Flink是个分布式流处理开源框架: 1>. 即使数据源是无序的或者晚到达的数据,也能保持结果准确…
基于 Flink 1.9 讲解的专栏,涉及入门.概念.原理.实战.性能调优.系统案例的讲解. 专栏介绍 扫码下面专栏二维码可以订阅该专栏 首发地址:http://www.54tianzhisheng.cn/2019/11/15/flink-in-action/ 专栏地址:https://gitbook.cn/gitchat/column/5dad4a20669f843a1a37cb4f 专栏亮点 全网首个使用最新版本 Flink 1.9 进行内容讲解(该版本更新很大,架构功能都有更新),领跑于目…
前言 在上一篇文章 你公司到底需不需要引入实时计算引擎? 中我讲解了日常中常见的实时需求,然后分析了这些需求的实现方式,接着对比了实时计算和离线计算.随着这些年大数据的飞速发展,也出现了不少计算的框架(Hadoop.Storm.Spark.Flink).在网上有人将大数据计算引擎的发展分为四个阶段. 第一代:Hadoop 承载的 MapReduce 第二代:支持 DAG(有向无环图)框架的计算引擎 Tez 和 Oozie,主要还是批处理任务 第三代:支持 Job 内部的 DAG(有向无环图),以…
一.流式计算的未来 在谷歌发表了 GFS.BigTable.Google MapReduce 三篇论文后,大数据技术真正有了第一次飞跃,Hadoop 生态系统逐渐发展起来. Hadoop 在处理大批量数据时表现非常好,主要有以下特点: 1.计算开始之前,数据必须提前准备好,然后才可以开始计算: 2.当大量数据计算完成之后,会输出最后计算结果,完成计算: 3.时效性比较低,不适用于实时计算: 而随着实时推荐.风控等业务的发展,数据处理时延要求越来越高,实时性要求也越来越高,Flink 开始在社区崭…
本文首发于:Java大数据与数据仓库,Flink实时计算pv.uv的几种方法 实时统计pv.uv是再常见不过的大数据统计需求了,前面出过一篇SparkStreaming实时统计pv,uv的案例,这里用Flink实时计算pv,uv. 我们需要统计不同数据类型每天的pv,uv情况,并且有如下要求. 每秒钟要输出最新的统计结果: 程序永远跑着不会停,所以要定期清理内存里的过时数据: 收到的消息里的时间字段并不是按照顺序严格递增的,所以要有一定的容错机制: 访问uv并不一定每秒钟都会变化,重复输出对IO…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理…