深度挖坑:从数据角度看人脸识别中Feature Normalization,Weight Normalization以及Triplet的作用 周翼南 北京大学 工学硕士 373 人赞同了该文章 基于深度学习的人脸识别发展,从deepid开始,到今年(或者说去年),已经基本趋于成熟. 凡是基于识别的,总是离不开三个东西:数据,网络,以及loss. 数据方面, 目前的公开数据集中有主打类别数的MS_celeb_1M,有主打各种姿态角与年龄的VggFace2:也有一些主打高质量的数据集,像WebFac…
一.思维理解 X:原始数据集: Wk:原始数据集 X 的前 K 个主成分: Xk:n 维的原始数据降维到 k 维后的数据集: 将原始数据集降维,就是将数据集中的每一个样本降维:X(i) . WkT = Xk(i): 在人脸识别中,X 中的每一行(一个样本)就是一张人脸信息: 思维:其实 Wk 也有 n 列,如果将 Wk 的每一行看做一个样本,则第一行代表的样本为最重要的样本,因为它最能反映 X 中数据的分布,第二行为次重要的样本:在人脸识别中,X 中的每一行是一个人脸的图像,则 Wk 的每一行也…
人脸识别中Softmax-based Loss的演化史  旷视科技 近期,人脸识别研究领域的主要进展之一集中在了 Softmax Loss 的改进之上:在本文中,旷视研究院(上海)(MEGVII Research Shanghai)从两种主要的改进方式——做归一化以及增加类间 margin——展开梳理,介绍了近年来基于 Softmax 的 Loss 的研究进展. 引言 Softmax简介 归一化(Normalization) Weight Normalization Feature Normal…
浅谈人脸识别中的loss 损失函数 2019-04-17 17:57:33 liguiyuan112 阅读数 641更多 分类专栏: AI 人脸识别   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u012505617/article/details/89355690 在人脸识别中,算法的提高主要体现在损失函数的设计上,损失函数会对整个网络的优化有着导向性的作用.我们看到许多常用的损失…
一.人脸对齐基本概念 人脸对齐通过人脸关键点检测得到人脸的关键点坐标,然后根据人脸的关键点坐标调整人脸的角度,使人脸对齐,由于输入图像的尺寸是大小不一的,人脸区域大小也不相同,角度不一样,所以要通过坐标变换,对人脸图像进行归一化操作.人脸关键点检测有很多算法可以使用包括:ASM.AAM.DCNN .TCDCN .MTCNN .TCNN.TCNN等,这里就不详细介绍,主要说一下得到人脸关键点之后如何进行人脸对齐,使所有人脸达到归一化效果,该过程如下图所示: 二.3D空间中的变换方式 欧氏变换:最简…
这篇文章我们继续从源码的角度学习 React JS 中的批量更新 State 的策略,供我们继续深入学习研究 React 之用. 前置文章列表 深入理解 React JS 中的 setState 从源码的角度再看 React JS 中的 setState 从源码的角度看 React JS 中批量更新 State 的策略(上) 1. batchingStrategy 策略 现在我们开始来看 batchingStrategy 的策略定义. 目前 React 中 batchingStrategy 的定…
opencv中提供的基于haar特征级联进行人脸检测的方法效果非常不好,本文使用dlib中提供的人脸检测方法(使用HOG特征或卷积神经网方法),并使用提供的深度残差网络(ResNet)实现实时人脸识别,不过本文的目的不是构建深度残差网络,而是利用已经训练好的模型进行实时人脸识别,实时性要求一秒钟达到10帧以上的速率,并且保证不错的精度.opencv和dlib都是非常好用的计算机视觉库,特别是dlib,前面文章提到了其内部封装了一些比较新的深度学习方法,使用这些算法可以实现很多应用,比如人脸检测.…
"知物由学"是网易云易盾打造的一个品牌栏目,词语出自汉·王充<论衡·实知>.人,能力有高下之分,学习才知道事物的道理,而后才有智慧,不去求问就不会知道."知物由学"希望通过一篇篇技术干货.趋势解读.人物思考和沉淀给你带来收获的同时,也希望打开你的眼界,成就不一样的你.当然,如果你有不错的认知或分享,也欢迎通过邮件(zhangyong02@corp.netease.com)投稿. 以下是正文: 本文作者:ArturBaćmaga,YND的AI专家. 想象一…
在之前的文章「深入理解 React JS 中的 setState」与 「从源码的角度再看 React JS 中的 setState」 中,我们分别看到了 React JS 中 setState 的异步表现,并从源码的角度简单地了解了 React 中 setState 的设计结构以及原理. 这篇文章继上篇文章后,继续从源码的角度来了解 React 中对 State 批量更新策略的定义. 同样,源码的部分为了保证格式正常就直接截图了,查看源码点击对应的链接直接跳转至 GitHub 查看即可. 1.…
本文由云+社区发表 作者:腾讯技术工程 导语:最近几年来,深度学习在推荐系统领域中取得了不少成果,相比传统的推荐方法,深度学习有着自己独到的优势.我们团队在QQ看点的图文推荐中也尝试了一些深度学习方法,积累了一些经验.本文主要介绍了一种用于推荐系统召回模块的深度学习方法,其出处是Google在2016年发表于RecSys的一篇用于YouTube视频推荐的论文.我们在该论文的基础上做了一些修改,并做了线上AB测试,与传统的协同召回做对比,点击率等指标提升明显. 为了系统的完整性,在介绍主模型前,本…
在C++中,我们会经常用到观察者模式(回调模式,Delegate模式等,意思都一样),比如当Source中的某个参数发生了变化时,我们通过观察者模式进行回调通知,下面是一个例子: class SourceParamsListener { public: virtual ~SourceParamsListener(){}; virtual void onSetRotateX(boost::shared_ptr<Source> src, int rotateX) = 0; virtual void…
#include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/core/core.hpp> #include <opencv2/objdetect/objdetect.hpp> #include <QDebug> using namespace cv; void detectAndDraw( Mat& img,…
影响AdaBoost人脸检测训练算法速度很重要的两方面是特征选取和特征计算.选取的特征为矩特征为Haar特征,计算的方法为积分图. (1)Haar特征:     Haar特征分为三类:边缘特征.线性特征.中心特征和对角线特征,组合成特征模板.特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白色矩形像素和减去黑色矩形像素和.在确定了特征形式后 Harr- like特征的数量就取决于训练样本图像矩阵的大小,特征模板在子窗口内任意放置,一种形态称为一种特征,找出所有子窗口的特征是进行弱分类训练的…
本文中,我们通过Procrustes analysis来处理特征点,Procrustes analysis算法可以参考:http://en.wikipedia.org/wiki/Procrustes_analysis       在数学上,Procruster analysis就是寻找一个标准形状,然后把所有其它特征点数据都和标准形状对齐,对齐的时候采用最小平方距离,用迭代的方法不断逼近.下面通过代码来了解如何实现Procrustes analysis. //Procrustes分析的基本思想是…
深度人脸识别:CVPR2020论文要点 Towards Universal Representation Learning for Deep Face Recognition 论文链接:https://arxiv.org/pdf/2002.11841.pdf 摘要 识别狂野的面孔是极其困难的,因为它们看起来有各种各样的变化.传统的方法要么使用目标域中的特定注释变化数据进行训练,要么通过引入未标记的目标变化数据来适应训练数据.相反,我们提出了一个通用的表示学习框架,它可以在不利用目标领域知识的情况…
00 环境配置 Anaconda 安装 1 下载 https://repo.anaconda.com/archive/ 考虑到兼容性问题,推荐下载Anaconda3-5.2.0版本. 2 安装 3 测试 在键盘按 Win + R, 输入 cmd,回车,将会打开cmd窗口,输入 activate base, 如下所示,表明anaconda环境系统变量无误. IDE PyCharm的安装 自行百度搜索下载并破解. http://idea.lanyus.com/ OpenCV安装 C:\Users\A…
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识      为什么要用神经网络? 特征提取的高效性.…
1 什么是人脸识别( what is face recognition ) 在相关文献中经常会提到人脸验证(verification)和人脸识别(recognition). verification就是输入图像,名字或id,判断是不是.而人脸识别是输入图像,输出这个人的名字或id. 我们先构造一个准确率高的verification,然后再把它应用到人脸识别中. 2 一次学习( One-shot learning ) 假设现在要做一个人脸识别,但是你的数据库对于每个人只有一张照片,要怎么做? 这个…
1 背景及理论基础 人脸识别是指将一个需要识别的人脸和人脸库中的某个人脸对应起来(类似于指纹识别),目的是完成识别功能,该术语需要和人脸检测进行区分,人脸检测是在一张图片中把人脸定位出来,完成的是搜寻的功能.从OpenCV2.4开始,加入了新的类FaceRecognizer,该类用于人脸识别,使用它可以方便地进行相关识别实验. 原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于或等于中心像素值,则该像素点的位置被标记为1,否则为0…
自动人脸识别的经典流程分为三个步骤:人脸检测.面部特征点定位(又称Face Alignment人脸对齐).特征提取与分类器设计.一般而言,狭义的人脸识别指的是"特征提取+分类器"两部分的算法研究. 在深度学习出现以前,人脸识别方法一般分为高维人工特征提取(例如:LBP, Gabor等)和降维两个步骤,代表性的降维方法有PCA, LDA等子空间学习方法和LPP等流行学习方法.在深度学习方法流行之后,代表性方法为从原始的图像空间直接学习判别性的人脸表示. 一般而言,人脸识别的研究历史可以分…
一,人脸检测/跟踪 人脸检测/跟踪的目的是在图像/视频中找到各个人脸所在的位置和大小:对于跟踪而言,还需要确定帧间不同人脸间的对应关系. 1, Robust Real-time Object Detection. Paul Viola, Michael Jones. IJCV 2004. 入选理由: Viola的人脸检测工作使得人脸检测真正变得实时可用.他们发表了一系列文章,这篇是引用率最高的一篇. 2, Fast rotation invariant multi-view face detec…
Python的开源人脸识别库:离线识别率高达99.38%   github源码:https://github.com/ageitgey/face_recognition#face-recognition 以往的人脸识别主要是包括人脸图像采集.人脸识别预处理.身份确认.身份查找等技术和系统.现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测.行人跟踪.甚至到了动态物体的跟踪.由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理.而且算法已经由以前的Adaboots.PCA等传统的统计…
Python的开源人脸识别库:离线识别率高达99.38%(附源码) 转https://cloud.tencent.com/developer/article/1359073   11.11 智慧上云 云服务器企业新用户优先购,享双11同等价格 立即抢购 在这篇文章中: 人脸识别的过程 人脸识别分类 DeepFace 1.DeepFace的基本框架 2. 验证 3. 实验评估 以往的人脸识别主要是包括人脸图像采集.人脸识别预处理.身份确认.身份查找等技术和系统.现在人脸识别已经慢慢延伸到了ADAS…
一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有 OpenCV 的身影. OpenCV 起始于 1999 年 Intel 的一个内部研究项目.从那时起,它的开发就一直很活跃.进化到现在,它已支持如 OpenCL 和 OpenGL 等现代技术,也支持如 iOS 和 Android 等平台. 199…
本文收录在个人博客:www.chengxy-nds.top,技术资源共享. 之前不是做了个开源项目嘛,在做完GitHub登录后,想着再显得有逼格一点,说要再加个人脸识别登录,就我这佛系的开发进度,过了一周总算是抽时间安排上了. 源码在文末 其实最近对写文章有点小抵触,写的东西没人看,总有点小失落,好在有同行大佬们的开导让我重拾了信心.调整了自己的心态,只要我分享的东西对大家有帮助就好,至于多少人看那就随缘吧! 废话不多说先看人脸识别效果动态,马赛克有点重哈,没办法长相实在是拿不出手. 实现原理…
上一个东家是从事安防行业的,致力于人工智能领域,有自主人脸识别.步态识别的算法.C++同事比较称职有什么问题都可以第一时间反馈,并得到合理的处理,封装的DLL 是基于更高性能的GPU算法,可支持更多线路的运算,接口调用简单,只需要传入图片即可得到特征特征值.对于公司的项目,更多的是与各类接口进行交互.包括建立任务.上传视频.截取片段,抽取特征,学习特征,步态比对等对接接口的复杂业务逻辑.由于长期和C++接口对接,包括Kafka消息队列传输等,对于公司项目支撑的业务流程比较了解.至于底层算法,只是…
前言 人脸识别技术现在越来越火,那么我们今天教大家实现一个人脸识别组件. 资源 element UI Vue.js tracking-min.js face-min.js 源码 由于我们的电脑有的有摄像头,有的没有摄像头,所以我们需要根据不同的场景来封装这个组件.先放个图吧,大家可以看得更加直观一些. 有摄像头的话,我们就显示(需要人像识别组件): 没有摄像头的话,我们就显示(这个直接上传人像即可): 判断有无摄像头,我们可以使用这个方法: // 判断有无摄像头,推荐放在created里 var…
原文 http://www.cnblogs.com/asxinyu/archive/2013/05/29/3107013.html 如果这些文章对你有用,有帮助,期待更多开源组件介绍,请不要吝啬手中的鼠标. [原创分享]Matlab.NET混编调用Figure窗体 http://www.cnblogs.com/asxinyu/archive/2013/04/14/3020813.html   [原创]Matlab与.NET基于类型安全的接口编程入门 http://www.cnblogs.com/…
原文:[原创]Matlab与.NET混合编程解决人脸识别问题 如果这些文章对你有用,有帮助,期待更多开源组件介绍,请不要吝啬手中的鼠标. [原创分享]Matlab.NET混编调用Figure窗体 http://www.cnblogs.com/asxinyu/archive/2013/04/14/3020813.html   [原创]Matlab与.NET基于类型安全的接口编程入门 http://www.cnblogs.com/asxinyu/archive/2013/05/16/3082299.…
本文档将利用京东云AI SDK来实践人脸识别中的人脸搜索功能,主要涉及到分组创建/删除.分组列表获取.人脸创建/删除.人脸搜索,本次实操的最终效果是:创建一个人脸库,拿一张图片在人脸库中搜索出相似度最高的一张,实现1:N的人脸识别,操作示意图如下: 一.准备工作 1. 创建AK/SK 登陆京东云控制台:https://console.jdcloud.com,点击右上角账户AccessKey 管理,接着如图点击创建Access Key 2. 购买人脸搜索服务 人脸搜索通过 API 调用次数计费,目…