https://cn.vjudge.net/problem/UVALive-6185 我真的是服了orz eps 1e5,1e6过不了 开1e2 1e1都能过 题意:给你一个d阶多项式f的f(0),f(1)...f(d+1),f(d+2) 有一个是错误的,问第几个是错的 题解:题目多给了两个方程(约束). 想了一下如果只给一个,是找不出来的. 给两个的话,可以这么考虑: 先取出一个方程X,再取剩下的n个高斯消元一下,将解得的系数带入最后一个方程,if成立,说明X是错的,else再取另一个(说明错…
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=648&page=show_problem&problem=5150 题目大意:给一幅N个点M条边的无向图,有一些边,其中一部分只能涂红色,一部分只能涂黑色,一部分两种颜色都可以涂.现要求红色的边不超过K条的生成树个数模1e9+7的值. 思路:感谢昂神滋磁,贴链接:http://sd-invol…
高斯消元…… (裸的暴力) 如果你有一个n元的方程组你会怎么办? Ans:直接用初中的解方程组的方法呀! 没错,直接暴力加减消元.那什么是“高斯消元”?说白了,就是普通的加减消元罢了. 本人再考场上打了一个暴力解方程,大家都说要高斯消元,弄得我方极了,最后才发现我打的暴力就是高斯消元 流程 选其中一个方程 将其他方程的其中一个元与选出的方程统一系数 将选出的方程与其他方程相减,消去一个未知数,得到 n-1 个 n-1 元的方程组 重复之前的步奏,知道只剩一个一元一次的方程 求出解,将解一步步往回…
题面 传送门(loj) 传送门(洛谷) 题解 模拟赛的时候只想出了高斯消元然后死活不知道怎么继续--结果正解居然就是高斯消元卡常? 首先有个比较难受的地方是它一个回合可能不止扣一滴血--我们得算出\(P_i\)表示一回合扣\(i\)滴血的概率,为 \[P_i={{k\choose i}m^{k-i}\over (m+1)^k}\] 所以这个柿子啥意思? 我们可以把\(k\)次扣血看成一个长度为\(k\)的序列,每个序列有\(m+1\)种选择方法,于是总的选法就是\((m+1)^k\).我们要钦定…
题目大意:树上拉灯游戏 高斯消元解异或方程组,对于全部的自由元暴力2^n枚举状态,代入计算 这做法真是一点也不优雅... #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define M 110 using namespace std; int n,m; int f[M][M],is_free[M],tot; int ans[M],cnt; void…
BZOJ4689 Find the Outlier Description Abacus教授刚刚完成了一个制作数表的计算引擎的设计.它被设计用于同时计算一个多项式在许多点的取值.例如对于多项式 f(x)=x^2+2x+1 ,一种可能的计算结果是 f(0)=1,f(1)=4,f(2)=9.f(3)=16,f(4)=25 .不幸的是,引擎存在一个故障使得计算出的值总有一个是错的,例如对于上述多项式,它可能输出 1,4,12,16,25 而不是 1,4,9,16,25 .请你帮教授找出发生故障的是哪个…
题意:给你一串数字,问这串数字符合f[n] = a*f[n-1],f[n] = a*f[n-1]+b*f[n-2],f[n] = a*f[n-1]+b*f[n-2]+c*f[n-3]这几个方程中的哪个,然后要你给出第n+1项,如果符合多个方程,项数小的优先(第一个方程优先). 解法:这题我先处理看是否满足f[n] = a*f[n-1]的形式,如果不满足,则用高斯消元借出两项和三项的情况的a,b,c,比如第二个方程,f[3] = a*f[2]+b*f[1],f[4] = a*f[3]+b*f[2]…
Linear Ecosystem 题目链接: http://acm.hust.edu.cn/vjudge/contest/127401#problem/B Description http://7xjob4.com1.z0.glb.clouddn.com/99b0fe905e5bd89a24c882832c93cc09 Input The first line of the input file contains an integer, n, which is the number of eco…
题意: 一个矩形区域被分成 m*n 个单元编号为 (1, 1)至 (m, n),左上为 (1, 1),右下为(m, n).给出P(k)i,j,其中 1 ≤ i ≤ m,1 ≤ j ≤ n,1 ≤ k ≤ 4,表示了 (i, j)到 (i+1, j),(i, j+1),(i-1, j),(i, j-1)的概率.一个骑士在 (1, 1),按照给定概率走,每步都于之前无关,问到达 (m, n)的期望步数. 解析: 很容易想到 然后移项  写出行列式 图截自大佬题解 矩阵中 概率为负 1为正 是因为移项…
给你一个未知的d次多项式在0,1,...,d+2处的取值,其中有且只有一个是错的,问你哪个是错的. 枚举哪个是错的,再在剩下的d+2个中取d+1个高斯消元,解出多项式系数,然后代一下最后剩下的那个数看看是否合法,如果合法再看看那个错的是否真的错了. #include<cstdio> #include<cmath> #include<algorithm> #include<cstring> using namespace std; #define N 11 d…