使用Scrapy开发一个分布式爬虫?你知道最快的方法是什么吗?一分钟真的能 开发好或者修改出 一个分布式爬虫吗? 话不多说,先让我们看看怎么实践,再详细聊聊细节~ 快速上手 Step 0: 首先安装 Scrapy-Distributed : pip install scrapy-distributed (非必须)如果你没有所需要的运行条件,你可以启动两个 Docker 镜像进行测试 (RabbitMQ 和 RedisBloom): # pull and run a RabbitMQ contai…
文章来自: https://blog.csdn.net/qq_29242877/article/details/79033287 在一些复杂的应用开发中,一个应用可能会涉及到连接多个数据源,所谓多数据源这里就定义为至少连接两个及以上的数据库了. 下面列举两种常用的场景: 一种是读写分离的数据源,例如一个读库和一个写库,读库负责各种查询操作,写库负责各种添加.修改.删除. 另一种是多个数据源之间并没有特别明显的操作,只是程序在一个流程中可能需要同时从A数据源和B数据源中取数据或者同时往两个数据库插…
| 好看请赞,养成习惯 你有一个思想,我有一个思想,我们交换后,一个人就有两个思想 If you can NOT explain it simply, you do NOT understand it well enough 现陆续将Demo代码和技术文章整理在一起 Github实践精选 ,方便大家阅读查看,本文同样收录在此,觉得不错,还请Star 前言 如果按照用途与特性进行粗略的划分,JUC 包中包含的工具大体可以分为 6 类: 执行者与线程池 并发队列 同步工具 并发集合 锁 原子变量 在…
CrawlSpider 提问:如果想要通过爬虫程序去爬取”糗百“全站数据新闻数据的话,有几种实现方法? 方法一:基于Scrapy框架中的Spider的递归爬取进行实现(Request模块递归回调parse方法). 方法二:基于CrawlSpider的自动爬取进行实现(更加简洁和高效). 全栈120页数据 --------------------------------------------------------------------------- CrawlSpider: 问题:如果我们想…
转自:http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html   布隆过滤器[1](Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter报告某一…
转载自http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html   布隆过滤器[1](Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter报告某一…
直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中.和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一个标志,用来判断key是否在集合中. 算法: 1. 首先需要k个hash函数,每个函数可以把key散列成为1个整数 2. 初始化时,需要一个长度为n比特的数组,每个比特位初始化为0 3. 某个key加入集合时,用k个hash函数计算出k个散列值,并把数组中对应的比特位置为1 4. 判断某个key是否…
布隆过滤器[1](Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter报告某一元素存在于某集合中,但是实际上该元素并不在集合中)和删除困难,但是没有识别错误的情形(即假反例False negatives,如果某个…
date: 2020-04-01 17:00:00 updated: 2020-04-01 17:00:00 Bloom Filter 布隆过滤器 之前的一版笔记 点此跳转 1. 什么是布隆过滤器 本质上布隆过滤器是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 "某样东西一定不存在或者可能存在". 相比于传统的 List.Set.Map 等数据结构,它更高效.占用空间更少,但是缺点是其返回的结…
原文链接:http://blog.csdn.net/qq_38646470/article/details/79431659 1.概念: 如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定.链表,树等等数据结构都是这种思路. 但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢.不过世界上还有一种叫作散列表(又叫哈希表,Hash table)的数据结构.它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit Array)中的一个点.这…