深度学习-TensorFlow2.0笔记(一)】的更多相关文章

一.Tensor 1.1 什么是Tensor?Tensor的数据类型 Tensor是张量的意思,在TensorFlow中张量可以是标量(scalar).向量(vector).矩阵(matrix).高维度张量(rank>2),像Numpy里的数组就不属于Tensor.TensorFlow里的常用的数据类型有tf.int32.tf.float32.tf.double.tf.bool.tf.Variable.下面展示了用tf.constant创建的一些Tensor: 需要特别注意代码IN[18]-IN…
深度学习Keras框架笔记之TimeDistributedDense类使用方法笔记 例: keras.layers.core.TimeDistributedDense(output_dim,init='glorot_uniform', activation='linear', weights=None W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint…
深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activation='linear', weights=None W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, input_dim=None) in…
深度学习Keras框架笔记之AutoEncoder类使用笔记 keras.layers.core.AutoEncoder(encoder, decoder,output_reconstruction=True, weights=None) 这是一个用于构建很常见的自动编码模型.如果参数output_reconstruction=True,那么dim(input)=dim(output):否则dim(output)=dim(hidden). inputshape: 取决于encoder的定义 ou…
目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参数初始化 对多维Tensor按维度操作 定义softmax操作 softmax回归模型 定义损失函数 定义准确率 训练模型 模型预测 softmax的简洁实现 初始化参数和获取数据 定义网络模型 初始化模型参数 定义损失函数 定义优化函数 训练 softmax的基本概念 分类问题 一个简单的图像分类…
1.准备数据 把数据放进txt文件中(数据量大的话,就写一段程序自己把数据自动的写入txt文件中,任何语言都能实现),数据之间用逗号隔开,最后一列标注数据的标签(用于分类),比如0,1.每一行表示一个训练样本.如下图所示. 其中前三列表示数据(特征),最后一列表示数据(特征)的标签.注意:标签需要从0开始编码! 2.实现全连接网络 这个过程我就不多说了,如何非常简单,就是普通的代码实现,本篇博客的重点在于使用自己的数据,有些需要注意的地方我在后面会做注释.直接上代码 #隐含层参数设置 in_un…
最近半个多月,被cuda等软件折磨的死去活来,昨天下午,终于安装好了环境,趁着matlab正在,在线下载VOT2016数据集,3点睡眼惺忪被闹醒后,睡不着,爬上来写这份记录. 先记录一下自己电脑的基本情况:win7 64位,显卡时GTX1050,台式机,matlab2016b. 首先是VS2013社区版的下载地址:http://download.microsoft.com/download/7/1/B/71BA74D8-B9A0-4E6C-9159-A8335D54437E/vs2013.4_c…
以下叙述只是简单的叙述,CNN+RNN(LSTM,GRU)的应用相关文章还很多,而且研究的方向不仅仅是下文提到的1. CNN 特征提取,用于RNN语句生成图片标注.2. RNN特征提取用于CNN内容分类视频分类.3. CNN特征提取用于对话问答图片问答.还有很多领域,比如根据面目表情判断情感,用于遥感地图的标注,用于生物医学的图像解析,用于安全领域的防火实时监控等.而且现阶段关于CNN+RNN的研究应用相关文章更加多样,效果越来越好,我们可以通过谷歌学术参阅这些文章,而且大部分可免费下载阅读,至…
1. 预测房价.广告点击率:典型的神经网络,standard NN. 图像:卷积神经网络,CNN. 一维序列数据,如音频,翻译:循环神经网络,RNN. 无人驾驶,涉及到图像.雷达等更多的数据类型:混合的神经网络. 2. 结构化数据:数据的数据库,每一种特征都有明确的定义,如预测房价.广告点击率.目前主要的营收来源还是处理结构化数据. 非结构化数据:如音频.图像.文本,特征不明显.人类和你擅长处理非结构化数据. 3. 为什么近期神经网络一下子变这么厉害?一个神经网络牛逼的条件:1)神经网络的规模足…
1.准备数据 首选将自己的图像数据分类分别放在不同的文件夹下,比如新建data文件夹,data文件夹下分别存放up和low文件夹,up和low文件夹下存放对应的图像数据.也可以把up和low文件夹换成0和1.根据自己数据类别,自己设定.如图所示 以上三张图片注意看目录.这样数据就准备好了. 2.将图像数据转换成tfrecords       直接上代码,代码中比较重要的部分我都做了注释. import os import tensorflow as tf from PIL import Imag…