[DB] Spark SQL】的更多相关文章

概述 基于Spark,兼容Hive 集成在Spark中,不需单独安装 提供统一的数据访问方式 结构化的数据类型:JDBC.JSON.Hive.Parquet(Saprk SQL 默认数据源) 支持标准的数据连接:JDBC.ODBC Hive把sql解析成了mapreduce程序,sparksql把sql语句解析成了Spark任务 spark core 操作RDD,spark sql 操作DataFrame RDD内部元素是java对象,DataFrame内部是Row对象,相比于RDD多了元信息…
转载请注明出处:http://www.cnblogs.com/xiaodf/ 之前的博客介绍了通过Kerberos + Sentry的方式实现了hive server2的身份认证和权限管理功能,本文主要介绍Spark SQL JDBC方式操作Hive库时的身份认证和权限管理实现. ThriftServer是一个JDBC/ODBC接口,用户可以通过JDBC/ODBC连接ThriftServer来访问SparkSQL的数据.ThriftServer在启动的时候,会启动了一个sparkSQL的应用程序…
Spark SQL 与传统 DBMS 的查询优化器 + 执行器的架构较为类似,只不过其执行器是在分布式环境中实现,并采用的 Spark 作为执行引擎. Spark SQL 的查询优化是Catalyst,其基于 Scala 语言开发,可以灵活利用 Scala 原生的语言特性很方便进行功能扩展,奠定了 Spark SQL 的发展空间. Catalyst 将 SQL 语言翻译成最终的执行计划,并在这个过程中进行查询优化.这里和传统不太一样的地方就在于, SQL 经过查询优化器最终转换为可执行的查询计划…
已经Spark Submit 2013哪里有介绍Spark SQL.就在很多人都介绍Catalyst查询优化框架.经过一年的发展后,.今年Spark Submit 2014在.Databricks放弃Shark 发育.和开关Spark SQL.是Shark继承了Hive太多,优化出现了瓶颈.如图: 今天把Spark最新的代码签了下来.測试了一下: 1.编译SparkSQL -bash-3.2$ git config --global http.sslVerify false -bash-3.2$…
第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataSet1.2.4 三者的共性1.2.5 三者的区别第2章 执行 Spark SQL 查询2.1 命令行查询流程2.2 IDEA 创建 Spark SQL 程序第3章 Spark SQL 解析3.1 新的起始点 SparkSession3.2 创建 DataFrames3.3 DataFrame 常用操…
1.背景: 控制上游文件个数每天7000个,每个文件大小小于256M,50亿条+,orc格式.查看每个文件的stripe个数,500个左右,查询命令:hdfs fsck viewfs://hadoop/nn01/warehouse/…….db/……/partition_date=2017-11-11/part-06999 -files -blocks; stripe个数查看命令:hive --orcfiledump viewfs://hadoop/nn01/warehouse/…….db/tab…
功能:通过spark sql 将hdfs 中文件导入到mongdo 所需jar包有:mongo-spark-connector_2.11-2.1.2.jar.mongo-java-driver-3.8.0.jar scala代码如下: ) { System.) } ) ) ) ) ) ) ).getOrCreate() import spark.implicits._ val df = spark.read.json(hdfsServer + logPath + "/" + fileN…
HDFS HDFS架构 1.Master(NameNode/NN) 对应 N个Slaves(DataNode/NN)2.一个文件会被拆分成多个块(Block)默认:128M例: 130M ==> 128M + 2M3.NameNode.DataNode负责内容:NN:1)负责客户端请求的响应2)负责元数据(文件名称.副本系数.Block存放的DN)的管理DN:1)存储用的文件对应的数据块(Block)2)定期向NN发送心跳信息(默认3秒),汇报本身及其所有的Block信息,健康状况4. 重要提示…
拷贝hive-site.xml到spark的conf目录下面 打开spark的conf目录下的hive-site.xml文件 加上这段配置(我这里三个节点的spark都这样配置) 把hive中的mysql连接包放到spark中去 检查spark-env.sh的hadoop配置项 检查dfs是否启动了 启动Mysql服务 启动hive metastore服务 启动hive 创建一个自己的数据库 创建一个表 create table if not exists test(userid string,…
解决方法:https://stackoverflow.com/questions/37442910/spark-shell-startup-errors 异常: 18/01/29 19:04:27 WARN HiveMetaStore: Retrying creating default database after error: Failed to start database 'metastore_db' with class loader org.apache.spark.sql.hive…