addlayer添加神经网络层】的更多相关文章

def addlayer(inputs,insize,outsize,activity_function = None):    weights = tf.Variable(tf.random_normal([insize,outsize]))    biases = tf.Variable(tf.zeros([1,outsize])+0.1)    totle = tf.multiply(weights,inputs)+ biase    if actiactivity_function is…
深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可以构建神经网络层函数,比如我们称之为add_layer()函数,由于神经网络层的工作原理是一层的神经元处理完成后得到一个结果,然后传递给下一个神经元,这就类似于函数的return与参数变量,所以最终代码的模型应该如下图所示: 通过add_layer的层层嵌套,实现上一个add_layer的结果返回给…
神经网络层的搭建主要是两种方法,一种是使用类(继承torch.nn.Moudle),一种是使用torch.nn.Sequential来快速搭建. 1)首先我们先加载数据: import torchimport torch.nn.functional as F #回归问题 x=torch.unsqueeze(torch.linspace(-1,1,100),dim=1) y=x.pow(2)+0.2*torch.rand(x.size()) 2)两种方法的模板: 2.1: 类(class):这基本…
莫烦tensorflow实战教学 1.添加神经层 #add_layer() import tensorflow as tf def add_layer(inputs,in_size,out_size,activation_function=None): Weights = tf.Variable(tf.random_normal([in_size,out_size])) biases = tf.Variable(tf.zeros([1,out_size])+0.1) Wx_plus_b = tf…
1. Convolution Layers 1.1 nn.Conv2d (1)原型 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None) 在由多个输入平面组成的输入信号上应用2D卷积,简言之就是在多通道输入图像上进行卷积操作. (2)参数…
对Keras提供的对各种层的抽象进行相对全面的概括 1 基础常用层 名称 作用 原型参数 Dense 实现全连接层 Dense(units,activation,use_bias=True, kernel_initializer=’glorot_uniform’, bias_initializer=’zeros’) Activation 对上层输出应用激活函数 Activation(activation) Dropout 对上层输出应用dropout以防止过拟合 Dropout(ratio) F…
layers介绍 Flatten和Dense介绍 优化器 损失函数 compile用法 第二个是onehot编码 模型训练 model.fit  两种创建模型的方法 from tensorflow.python.keras.preprocessing.image import load_img,img_to_array from tensorflow.python.keras.models import Sequential,Model from tensorflow.python.keras.…
tensorflow笔记(二)之构造一个简单的神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7425200.html 前言 这篇博客将一步步构建一个tensorflow的神经网络去拟合曲线,并将误差和结果可视化.博客的末尾会放本篇博客的jupyter notebook,可以下载自己调试调试. 实践--构造神经网络 本次构造的神经网络是要拟合一个二次曲线,神经网络的输入层是一个特征,即只有一个神经元,隐藏层有10个特…
1.迁移学习 比如要训练一个放射科图片识别系统,但是图片非常少,那么可以先在有大量其他图片的训练集上进行训练,比如猫狗植物等的图片,这样训练好模型之后就可以转移到放射科图片上,模型已经从其他图片中学习到了低层的特征,可能会对当前训练系统产生帮助.但要保证其他图片的量很多. 对迁移的模型只要修改输出层,进行重新训练最后一层或者最后一两层的参数即可,或者还可以在最后层进行添加神经网络层. 任务A和B有相同的输入x; 对任务A比任务B有更多的数据: A的低层特征对学习B有帮助. 2 多任务学习 对于迁…
介绍如何使用keras搭建一个多层感知机实现手写体识别及搭建一个神经网络最小的必备知识 import keras # 导入keras dir(keras) # 查看keras常用的模块 ['Input', 'Model', 'Sequential', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '__ver…