OKR-Periods of Words「POI 2006」】的更多相关文章

题目描述 串是有限个小写字符的序列,特别的,一个空序列也可以是一个串.一个串 P 是串 A 的前缀,当且仅当存在串 B,使得 A = PB.如果 P != A 并且 P 不是一个空串,那么我们说 P 是 A 的一个 proper 前缀. 定义 Q 是 AA 的周期,当且仅当 Q 是 A 的一个 proper 前缀并且 A 是 Q+Q 的前缀(不一定要是 proper 前缀).比如串 abab 和 ababab 都是串 abababa 的周期.串 A 的最大周期就是它最长的一个周期或者是一个空串(…
题目链接 戳我 \(Solution\) 看到"最大值最小",就知道应该要二分 二分之后,对于每个\(mid\),只要计算小于\(mid\)的边,然后在剩下的图中判断有无欧拉回路 但这个图是一个混合图. 先对每条无向边随意的定向,统计每个点入度和出度的差,如果有一个点的入度和出度的奇偶性不同,那么就肯定无解(而改变无向边方向的话,会让它们的入读\(-\)出度变化\(2\),则他们的差无法变为\(0\),所以无法相同) 如果入度\(-\)出度\(=x\),若\(x < 0\),就向…
Description 给定一长度为 \(n\) 的数列 \(a\),可将 \(a_i\) 改为任意整数 \(k\),代价为 \(\mid a_i-k\mid\). 问最少改变多少个数能把它变成一个单调严格上升的序列. 输出最少需要改变的数的个数,以及在改变的数最少的情况下,最小的代价和. \(1\leq n\leq 3.5\times 10^4,1\leq a_i\leq 10^5\). Solution Part 1 Solve Problem 1:需要改变的数最少,则需保留的数要尽可能多.…
\(\mathcal{Description}\)   Link.   给定平面上 \(n\) 个点,求最小的能覆盖其中至少 \(m\) 个点的圆半径及一个可能的圆心.   \(n\le500\),坐标值 \(X\in[0,10^4]\). \(\mathcal{Solution}\)   不难想到二分答案 \(r\),以每个点为圆心,\(r\) 为半径作圆,若 \(r\) 合法则能找到一个被至少 \(m\) 个圆覆盖的点.   但是圆的交极难处理,结合数据范围,考虑通过一些枚举操作来简化问题-…
\(\mathcal{Description}\)   Link.   给定一个大小为 \(n\) 的环,每个结点有一个所属国家.\(k\) 次事件,每次对 \([l,r]\) 区间上的每个点点权加上一个值.对于每个国家,求操作多少次事件后其拥有的结点权值总和不小于给定值.   \(n,k\le3\times10^5\). \(\mathcal{Soltuion}\)   新初二大佬切掉的题兔子都不会 qwq.   于是补习了一下整体二分.   考虑一个单点的情况,显然二分,不过每个点单独二分答…
\(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的树,求无序三元组 \((u,v,w)\) 的个数,满足其中任意两点树上距离相等.   \(n\le10^5\). \(\mathcal{Solution}\)   考虑如何计数.对于任意三元组 \((u,v,w)\),我们仅在其两两路径所进过的树上最高点对其统计一次.如图:   对于三元组 \((4,6,7)\),我们仅希望在 \(1\) 处统计它的贡献.   考虑 DP,记 \(d(u,v)\)…
\(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 \(u\) 到 \(v\) 的代价为 \(a\),\(v\) 到 \(u\) 的代价为 \(b\).求从结点 \(1\) 开始的,经过每个点至少一次,每条边恰好一次,最后回到结点 \(1\) 的路径,使得每条边代价的最大值最小.   \(n,a,b\le10^3\),\(m\le2\times10^…
有天上飞的概念,就要有落地的实现 概念十遍不如代码一遍,朋友,希望你把文中所有的代码案例都敲一遍 先赞后看,养成习惯 SpringBoot 图文教程系列文章目录 SpringBoot图文教程1-SpringBoot+Mybatis 环境搭建 SpringBoot图文教程2-日志的使用「logback」「log4j」 SpringBoot图文教程3-「'初恋'情结」集成Jsp SpringBoot图文教程4-SpringBoot 实现文件上传下载 SpringBoot图文教程5-SpringBoo…
前言 接着上周写的截图控件继续更新 绘制方框与椭圆. 1.WPF实现截屏「仿微信」 2.WPF 实现截屏控件之移动(二)「仿微信」 3.WPF 截图控件之伸缩(三) 「仿微信」 正文 有开发者在B站反馈第三篇有Issues已修复. 实现在截图区域内绘制 方框与椭圆 有两种方式 1)可以在截图的区域内部添加一个Canvas宽高填充至区域内,在进行绘制方框或椭圆. 2)直接在外层的Canvas中添加,这样需要判断鼠标按下的位置和移动的位置必须在已截图区域内,如超出范围也不绘制到区域外. 本章使用了第…
前端构建工具之gulp(一)「图片压缩」 已经很久没有写过博客了,现下终于事情少了,开始写博吧 今天网站要做一些优化:图片压缩,资源合并等 以前一直使用百度的FIS工具,但是FIS还没有提供图片压缩的相关插件,于是找到了腾讯的智图,而智图目前提供的插件只有gulp-imageisux 无奈之下,只好去学习gulp这款工具了,下面是gulp的相关介绍: gulp介绍 gulp.js 是一种基于流的,代码优于配置的新一代构建工具. Gulp 和 Grunt 类似.但相比于 Grunt 的频繁的 IO…