一.异常现象截图  二.解决方式: 1.背景 早期的canal版本(<=1.0.24),在处理表结构的DDL变更时采用了一种简单的策略,在内存里维护了一个当前数据库内表结构的镜像(通过desc table获取). 这样的内存表结构镜像的维护存在问题,如果当前在处理的binlog为历史时间段T0,当前时间为T1,存在的一些异常分支情况: 假如在T0~T1的时间内,表结构A发生过增加列的DDL操作,那在处理T0时间段A表的binlog时,拿到的表结构为T1的镜像,就会出现列不匹配的情况. 比如之前的…
写在前面 在当今互联网行业,尤其是现在分布式.微服务开发环境下,为了提高搜索效率,以及搜索的精准度,会大量使用Redis.Memcached等NoSQL数据库,也会使用大量的Solr.Elasticsearch等全文检索服务.那么,这个时候,就会有一个问题需要我们来思考和解决:那就是数据同步的问题!如何将实时变化的数据库中的数据同步到Redis/Memcached或者Solr/Elasticsearch中呢? 互联网背景下的数据同步需求 在当今互联网行业,尤其是现在分布式.微服务开发环境下,为了…
chaosblade是阿里巴巴最近开源的一款故障注入的工具,因为我最近在做公司的虚拟化平台的可靠性测试工具,无意中发现这个工具,个人感觉比较有用,用起来也比较简单,所以拿出来分享一下,期望对大家的工作和学习有所帮助.这里仅仅是一个抛砖引玉的作用. 下面进入正题 一.安装 1.下载路径 https://github.com/chaosblade-io/chaosblade/releases 2.解压即用,无需安装 tar -zxvf chaosblade-0.3.0.linux-amd64.tar…
前面提到数据库缓存不一致的几种解决方案,但是在不同的场景下各有利弊,而今天我们使用的canal进行缓存与数据同步的方案是最好的,但是也有一个缺点,就是相对前面几种解决方案会引入阿里巴巴的canal组件,订阅消费binlog日志,增加的系统复杂度. canal官网地址:https://github.com/alibaba/canal/wiki 简介: canal [kə'næl],译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费 工作原理 canal…
一.在目标数据库新建一个相同的数据库名. 二.工具-->结构同步. 三.填写源数据库和目标数据库. 四.点击比对 五.点击部署 六.点击运行 七.点击关闭.此时源数据库的结构已经同步到目标数据库 数据同步 八.工具-->数据同步 九.点击下一步 十.点击比对 十一.点击部署 十二.点击运行 十三.点击关闭.此时源数据库的数据已经同步到目标数据库…
1.官网下载 下载地址:https://github.com/alibaba/DataX DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括 MySQL.Oracle.SqlServer.Postgre.HDFS.Hive.ADS.HBase.TableStore(OTS).MaxCompute(ODPS).DRDS 等各种异构数据源之间高效的数据同步功能. 支持的数据源:https://github.com/alibaba/DataX/wiki/DataX-all-dat…
背景 早期,阿里巴巴 B2B 公司因为存在杭州和美国双机房部署,存在跨机房同步的业务需求 ,主要是基于trigger的方式获取增量变更.从 2010 年开始,公司开始逐步尝试数据库日志解析,获取增量变更进行同步,由此衍生出了增量订阅和消费业务,从此开启一段新纪元. 当前的 canal 支持源端 MySQL 版本包括 5.1.x , 5.5.x , 5.6.x , 5.7.x , 8.0.x 基于日志增量订阅和消费的业务包括 数据库镜像 数据库实时备份 索引构建和实时维护(拆分异构索引.倒排索引等…
前言 如今大型的IT系统中,都会使用分布式的方式,同时会有非常多的中间件,如redis.消息队列.大数据存储等,但是实际核心的数据存储依然是存储在数据库,作为使用最广泛的数据库,如何将mysql的数据与中间件的数据进行同步,既能确保数据的一致性.及时性,也能做到代码无侵入的方式呢?如果有这样的一个需求,数据修改后,需要及时的将mysql中的数据更新到elasticsearch,我们会怎么进行实现呢? 数据同步方案选择 针对上文的需求,经过思考,初步有如下的一些方案: 代码实现 针对代码中进行数据…
大家好,我是不才陈某~ 数据同步一直是一个令人头疼的问题.在业务量小,场景不多,数据量不大的情况下我们可能会选择在项目中直接写一些定时任务手动处理数据,例如从多个表将数据查出来,再汇总处理,再插入到相应的地方. 但是随着业务量增大,数据量变多以及各种复杂场景下的分库分表的实现,使数据同步变得越来越困难. 今天这篇文章使用阿里开源的中间件Canal解决数据增量同步的痛点. 文章目录如下: Canal是什么? canal译意为水道/管道/沟渠,主要用途是基于 MySQL 数据库增量日志解析,提供增量…
项目介绍 名称: DataLink['deitə liŋk]译意: 数据链路,数据(自动)传输器语言: 纯java开发(JDK1.8+)定位: 满足各种异构数据源之间的实时增量同步,一个分布式.可扩展的数据同步系统开源地址:https://github.com/ucarGroup/DataLink 此次开源为去除内部依赖后的版本(开源的是增量同步子系统),在集团内部datalink和阿里的datax还进行了深度集成,增量(datalink)+全量(datax)共同组成统一的数据交换平台 项目背景…