squeeze的用法主要就是对数据的维度进行压缩或者解压. 先看torch.squeeze() 这个函数主要对数据的维度进行压缩,去掉维数为1的的维度,比如是一行或者一列这种,一个一行三列(1,3)的数去掉第一个维数为一的维度之后就变成(3)行.squeeze(a)就是将a中所有为1的维度删掉.不为1的维度没有影响.a.squeeze(N) 就是去掉a中指定的维数为一的维度.还有一种形式就是b=torch.squeeze(a,N) a中去掉指定的定的维数为一的维度. 再看torch.unsque…
squeeze的用法主要就是对数据的维度进行压缩或者解压. squeeze() torch.squeeze(a):去掉a中维数为1的维度. a.squeeze(N):去掉特定维度N下维数为1的维度. b=torch.squeeze(a,N):a中去掉指定的维数为1的维度. unsqueeze() a.unsqueeze(N):在a中指定位置N加上一个维数为1的维度. b=torch.unsqueeze(a,N):在a中指定位置N加上一个维数为1的维度.…
https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 二维卷积层, 输入的尺度是(N, Cin,H,W),输出尺度(N,Cout,Hout,Wout)的计算方式: 说明 stride: 控制相关系数的计算步长 dilation:…
1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和nn.functional之间的差别如下,我们以conv2d的定义为例 torch.nn.Conv2d import torch.nn.functional as F class Conv2d(_ConvNd): def __init__(self, in_channels, out_channels…
squeeze用来减少维度, unsqueeze用来增加维度 具体可见下方博客. pytorch中squeeze和unsqueeze…
PyTorch - torch.eq.torch.ne.torch.gt.torch.lt.torch.ge.torch.le 参考:https://flyfish.blog.csdn.net/article/details/106388548…
发现 对于torch.matmul和torch.bmm,都能实现对于batch的矩阵乘法: a = torch.rand((2,3,10))b = torch.rand((2,2,10))### matmal()res1 = torch.matmul(a,b.transpose(1,2))print res1 """...[torch.FloatTensor of size 2x3x2]"""### bmm()res2 = torch.bmm(a…
torch.norm(input, p='fro', dim=None, keepdim=False, out=None, dtype=None) 返回所给tensor的矩阵范数或向量范数 参数: input:输入tensor p (int, float, inf, -inf, 'fro', 'nuc', optional):范数计算中的幂指数值.默认为'fro' dim (int,2-tuple,2-list, optional): 指定计算的维度.如果是一个整数值,向量范数将被计算:如果是一…
Q1:什么是神经网络? Q2:torch vs numpy Numpy:NumPy系统是Python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高 效的多(该结构也可以用来表示矩阵(matrix)).专为进行严格的数字处理而产生.   Q3:numpy和Torch的转换 Q3 torch中的数学运算 torch中的tensor运算和numpy的array运算很相似,具体参看下面的代码 import t…
在写代码时发现我们在定义Model时,有两种定义方法: torch.nn.Conv2d()和torch.nn.functional.conv2d() 那么这两种方法到底有什么区别呢,我们通过下述代码看出差别,先拿torch.nn.Conv2d torch.nn.Conv2d class Conv2d(_ConvNd): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=…
Pytorch中randn和rand函数的用法 randn torch.randn(*sizes, out=None) → Tensor 返回一个包含了从标准正态分布中抽取的一组随机数的张量 size:张量的形状, out:结果张量.(目前还没有看到使用这个参数的例子) rand也差不多其实: torch.rand(*sizes, out=None) → Tensor 但是它是[0,1)之间的均匀分布 其他一些分布 离散正态分布 torch.normal(means, std, out=None…
从 relu 的多种实现来看 torch.nn 与 torch.nn.functional 的区别与联系 relu多种实现之间的关系 relu 函数在 pytorch 中总共有 3 次出现: torch.nn.ReLU() torch.nn.functional.relu_() torch.nn.functional.relu_() torch.relu() torch.relu_() 而这3种不同的实现其实是有固定的包装关系,由上至下是由表及里的过程. 其中最后一个实际上并不被 pytorch…
torch.rand(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) #返回从[0,1)均匀分布中抽取的一组随机数:均匀分布采样:#*sizes指定张量的形状: torch.randn(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) #返回从标…
定义 torch.sort(input,dim,descending) torch.argsort(input,dim,descending) 用法 torch.sort:对输入数据排序,返回两个值,即排序后的数据values和其在原矩阵中的坐标indices torch.argsort:同torch.sort()返回的indices 参数 input:输入矩阵 dim:排序维度,默认为dim=1,即对行排序 descending:排序方式(从小到大和从大到小),默认为从小到大排序(即desce…
torch.cat() 和 torch.stack()略有不同torch.cat(tensors,dim=0,out=None)→ Tensortorch.cat()对tensors沿指定维度拼接,但返回的Tensor的维数不会变,可理解为续接:torch.stack(tensors,dim=0,out=None)→ Tensortorch.stack()同样是对tensors沿指定维度拼接,但返回的Tensor会多一维,可理解为叠加:----------------版权声明:本文为CSDN博主…
torch.stack():http://www.45fan.com/article.php?aid=1D8JGDik5G49DE1X torch.stack()个人理解:属于先变形再cat的操作,所以在哪个维度上stack,要先把原数据变成相应维度上的值. 例如:x = [1, 2], y = [3, 4], torch.stack([x, y], dim=1) x要先变成2*1的形状,即[[1], [2]], y也一样,[[3], [4]],然后再在第一个维度上叠加,变成[[1, 3], […
1. unsqueeze() 该函数用来增加某个维度.在PyTorch中维度是从0开始的. import torch a = torch.arange(0, 9) print(a) 结果: tensor([0, 1, 2, 3, 4, 5, 6, 7, 8]) 利用view()改变tensor的形状.值得注意的是view不会修改自身的数据,返回的新tensor与源tensor共享内存:同时必须保证前后元素总数一致. a = a.view(3, 3) print(f"a:{a} \n shape:…
参考:https://pytorch.org/docs/stable/nn.html torch.nn.init.constant_(tensor, val) 使用参数val的值填满输入tensor 参数: tensor:一个n维的torch.Tensor val:用于填满tensor的值 举例: w = torch.empty(,) nn.init.constant_(w, 0.3) 返回: tensor([[0.3000, 0.3000, 0.3000, 0.3000, 0.3000], […
学习pytorch路程之动手学深度学习-3.4-3.7 置信度.置信区间参考:https://cloud.tencent.com/developer/news/452418 本人感觉还是挺好理解的 交叉熵参考博客:https://www.cnblogs.com/kyrieng/p/8694705.html   https://blog.csdn.net/tsyccnh/article/details/79163834  个人感觉还不错,好理解 (这段瞅瞅就行了)torchvision包,服务于P…
一.unsqueeze()函数 1. 首先初始化一个a 可以看出a的维度为(2,3) 2. 在第二维增加一个维度,使其维度变为(2,1,3) 可以看出a的维度已经变为(2,1,3)了,同样如果需要在倒数第二个维度上增加一个维度,那么使用b.unsqueeze(-2) 二.squeeze()函数介绍 1. 首先得到一个维度为(1,2,3)的tensor(张量) 由图中可以看出c的维度为(1,2,3) 2.下面使用squeeze()函数将第一维去掉 可见,维度已经变为(2,3) 3.另外 可以看出维…
增加一个维度 out.unsqueeze(-1) 降低一个维度 out.squeeze(dim=1)…
问题描述 python环境下安装cpu版本pytorch,安装成功,但是导入出错. 报错如下 解决方法 参考博客,大家解决方法大概有:升级numpy.添加.dll文件到环境变量,均没有成功.本地python版本为python3.6.0,升级为python3.6.5版本,继续导入: 报错如上,大概是说我的numpy版本的问题.于是,将numpy版本更新: 更新完成 后,重新导入: 没有报错了. 总结 1. 和python版本有关系.综合网上博文,好像3.6.0版本会报错,但是3.6.x(x>0)版…
... (⊙o⊙)… ... 当时具体的错误我没有截图, 用这个命令时 , conda 会报无法在源中找到PyTorch, 还是什么的错误 有很大的一个可能是, 安装的Anaconda 是32 位的, 我换成64 位的之后就可以安装了 (安装得慢的话, 试试 conda install pytorch torchvision cudatoolkit=10.0 #cuda 10 或 conda install pytorch torchvision cudatoolkit=9.2 -c defau…
形式: torch.max(input) → Tensor 返回输入tensor中所有元素的最大值: a = torch.randn(1, 3) >>0.4729 -0.2266 -0.2085 torch.max(a) #也可以写成a.max() >>0.4729 形式: torch.max(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor) 按维度dim 返回最大值,并且返回索引. torch.max(…
我学习pytorch框架不是从框架开始,从代码中看不懂的pytorch代码开始的 可能由于是小白的原因,个人不喜欢一些一下子粘贴老多行代码的博主或者一些弄了一堆概念,导致我更迷惑还增加了畏惧的情绪(个人感觉哈),我觉得好像好多人都是喜欢给说的明明白白的,难听点就是嚼碎了喂我们.这样也行啊(有点恶心哈),但是有些东西即使嚼碎了我们也弄不明白,毕竟有一些知识是很难的(嚼碎后的知识我们都难以理解) 我知道了这些,也在尽力写博客时写的容易理解,但是自身实力有限,还做不到写博客写的既有条理又容易理解,请谅…
import torch torch中的squeeze与unsqueeze作用是去除/添加维度为1的行 例如,a=torch.randn(2,3) 那么b=a.unsqueeze(0),b为(1,2,3)的矩阵 类似的,b=a.unsqueeze(1),b为(2,1,3)的矩阵 b=a.unsqueeze(2),b为(2,3,1)的矩阵 同理,如果a=torch.randn(2,1,3) 则b=a.squeeze(2)=torch.squeeze(a),b为(2,3)的矩阵.…
torch 包 torch 包含了多维张量的数据结构以及基于其上的多种数学操作.另外,它也提供了多种工具,其中一些可以更有效地对张量和任意类型进行序列化. 它有CUDA 的对应实现,可以在NVIDIA GPU上进行张量运算(计算能力>=2.0). http://www.aibbt.com/a/pytorch/ 张量 Tensors torch.is_tensor[source] torch.is_tensor(obj) 如果obj 是一个pytorch张量,则返回True 参数: obj (Ob…
官方文档 torch.matmul() 函数几乎可以用于所有矩阵/向量相乘的情况,其乘法规则视参与乘法的两个张量的维度而定. 关于 PyTorch 中的其他乘法函数可以看这篇博文,有助于下面各种乘法的理解. torch.matmul() 将两个张量相乘划分成了五种情形:一维 × 一维.二维 × 二维.一维 × 二维.二维 × 一维.涉及到三维及三维以上维度的张量的乘法. 以下是五种情形的详细解释: 如果两个张量都是一维的,即 torch.Size([n]) ,此时返回两个向量的点积.作用与 to…
torch.Tensor torch.Tensor是一种包含单一数据类型元素的多维矩阵. Torch定义了七种CPU tensor类型和八种GPU tensor类型: Data tyoe CPU tensor GPU tensor 32-bit floating point torch.FloatTensor torch.cuda.FloatTensor 64-bit floating point torch.DoubleTensor torch.cuda.DoubleTensor 16-bit…
转自:https://ptorch.com/news/52.html torch.Storage是单个数据类型的连续的一维数组,每个torch.Tensor都具有相同数据类型的相应存储.他是torch.tensor底层数据结构,他除了像Tensor一样定义数值,还可以直接把文件映射到内存中进行操作,如果你使用的是pytorch神经网络,你不需要直接使用它们.中文文档地址:https://www.ptorch.com/docs/1/Storage 注意:任何比一维数组更复杂的都需要用到张量. to…