我用了两天左右的时间完成了这一门课<Introduction to Python for Data Science>的学习,之前对Python有一些基础,所以在语言层面还是比较顺利的,这门课程的最大收获是让我看到了在数据科学中Python的真正威力(也理解了为什么Python这么流行),同时本次课程的交互式练习体验(Datacamp)非常棒.     这门课程主要包括了6个单元的内容,一开始介绍了Python的基本概念(常见数据类型和变量),从第二节开始讲解列表在Python中的使用,并且逐步…
作者:Pier Paolo Ippolito@南安普敦大学 编译:机器学习算法与Python实战(微信公众号:tjxj666) 原文:https://towardsdatascience.com/probability-distributions-in-data-science-cce6e64873a7 介绍 拥有良好的统计背景对于数据科学家的日常工作可能会大有裨益.每次我们开始探索新的数据集时,我们首先需要进行探索性数据分析(EDA),以了解某些特征的概率分布是什么.如果我们能够了解数据分布中…
介绍 "Another day has passed, and I still haven't used y = mx + b." 这听起来是不是很熟悉?我经常听到我大学的熟人抱怨他们花了很多时间的代数方程在现实世界中基本没用. 好吧,但我可以向你保证,并不是这样的.特别是如果你想开启数据科学的职业生涯. 线性代数弥合了理论与概念实际实施之间的差距.对线性代数的掌握理解打开了我们认为无法理解的机器学习算法的大门.线性代数的一种这样的用途是奇异值分解(SVD)用于降维. 你在数据科学中一…
使用这些库把 Python 变成一个科学数据分析和建模工具. Python 的许多特性,比如开发效率.代码可读性.速度等使之成为了数据科学爱好者的首选编程语言.对于想要升级应用程序功能的数据科学家和机器学习专家来说,Python 通常是最好的选择(比如,Andrey Bulezyuk 使用 Python 语言创造了一个优秀的机器学习应用程序). 由于 Python 的广泛使用,因此它拥有大量的库,使得数据科学家能够很容易地完成复杂的任务,而且不会遇到许多编码困难.下面列出 3 个用于数据科学的顶…
建议:如果只是处理(小)数据的,用R.结果更可靠,速度可以接受,上手方便,多有现成的命令.程序可以用.要自己搞个算法.处理大数据.计算量大的,用python.开发效率高,一切尽在掌握. 概述 在真实的数据科学世界里,我们会有两个极端,一个是业务,一个是工程.偏向业务的数据科学被称为数据分析(Data Analysis),也就是A型数据科学.偏向工程的数据科学被称为数据构建(Data Building),也就是B型数据科学. 从工具上来看,按由业务到工程的顺序,这个两条是:EXCEL >> R…
1 政府数据 Data.gov:这是美国政府收集的数据资源.声称有多达40万个数据集,包括了原始数据和地理空间格式数据.使用这些数据集需要注意的是:你要进行必要的清理工作,因为许多数据是字符型的或是有缺失值. Socrata:它是探索政府相数据的另一个好地方.Socrata的一个了不起的地方是,他们有不错的可视化工具,使研究数据更为容易. 一些城市都有自己的数据门户网站设置,可供访问者浏览城市的相关数据.例如,在旧金山数据网站,你可以获得很多数据,从犯罪统计到城市的停车位. 联合国有关网站,例如…
责任链模式  责任链模式在Dubbo中发挥的作用举足轻重,就像是Dubbo框架的骨架.Dubbo的调用链组织是用责任链模式串连起来的. 责任链中的每个节点实现Filter接口,然后由ProtocolFilterWrapper,将所有Filter串连起来. Dubbo的许多功能都是通过Filter扩展实现的,比如监控.日志.缓存.安全.telnet以及RPC本身都是. 如果把Dubbo比作一列火车,责任链就像是火车的各车厢,每个车厢的功能不同. 如果需要加入新的功能,增加车厢就可以了,非常容易扩展…
继上篇教程中提到的,我们新建一个简单的tabs类型的Ionic项目. 依据文件夹文件我们知道,系统自己主动创建了一个controller文件和server文件,而且把全部的控制器和服务都写到这两个文件中面. 这是一个简单的项目,业务逻辑代码也非常少.这样子实现并没有什么问题.可是当我们的项目越写越多.业务逻辑越来越复杂.假设我们还是把全部的控制器写到同一个文件中面.那可能我们将要面对的就是一个有着上万行代码的文件. 每次编辑仅仅能通过搜索keyword来定位了. 所以真正编辑项目的时候我们应该都…
1.matplotlib模块生成直线图和散点图 >>>import matplotlib.pyplot as plt >>>year = [1950,1970,1990,2010]#作为x轴 >>>pop = [2.519,3.692,5.263,6.972]]#作为Y轴 >>>plt.plot(year,pop)#直线图[<matplotlib.lines.Line2D object at 0x000001A6BA9874E0…
Python是门很神奇的语言,历经时间和实践检验,受到开发者和数据科学家一致好评,目前已经是全世界发展最好的编程语言之一.简单易用,完整而庞大的第三方库生态圈,使得Python成为编程小白和高级工程师的首选. 在本文中,我们会分享不同于市面上的python数据科学库(如numpy.padnas.scikit-learn.matplotlib等),尽管这些库很棒,但是其他还有一些不为人知,但同样优秀的库需要我们去探索去学习. 1. Wget 从网络上获取数据被认为是数据科学家的必备基本技能,而Wg…