(补) HMM 求解参数-状态转移矩阵 A】的更多相关文章

内容包含脉冲响应矩阵和传递函数矩阵之间的关系,状态转移矩阵及性质,以及线性连续系统离散化及其性质…
NVIDIA Jetson TX2 查看系统参数状态. 当前博主的TX2更新的版本为:Jetpack 3.3, cuda 9.0.252, cudnn7.0, opencv3.3.1, TensorRT4.0.2,系统内核:tegra-ubuntu 4.4.38-tegra aarch64, Linux系统版本:Ubuntu16.04,原Python:2.7.11+(更新后为Python3.5.2) pip19.0.3,setuptools-36.6.0(更新后为setuptools-40.8.…
HMM(hidden markov model)可以用于模式识别,李开复老师就是采用了HMM完成了语音识别. 一下的例子来自于<统计学习方法> 一个HMM由初始概率分布,状态转移概率分布,观测概率分布确定.并且基于两个假设: 1 假设任意时刻t的状态只依赖于前一个时刻的状态,与其他时刻的状态和观测序列无关 2 假设任意时刻的观测只依赖与该市可的马尔科夫的状态,与其他观测,状态无关. 基于此,HMM有三个基本问题: 1 概率计算问题,给定模型和观测序列,计算在模型下的观测序列出现的概率 2 预测…
Nianwen Xue在<Chinese Word Segmentation as Character Tagging>中将中文分词视作为序列标注问题(sequence labeling problem),由此引入监督学习算法来解决分词问题. 1. HMM 首先,我们将简要地介绍HMM(主要参考了李航老师的<统计学习方法>).HMM包含如下的五元组: 状态值集合\(Q=\{q_1, q_2, \cdots, q_N\}\),其中\(N\)为可能的状态数: 观测值集合\(V=\{v_…
目录 前言 目录 隐马尔可夫模型(Hidden Markov Model,HMM) HMM分词 两个假设 Viterbi算法 代码实现 实现效果 完整代码 参考文献 前言 在浅谈分词算法(1)分词中的基本问题我们讨论过基于词典的分词和基于字的分词两大类,在浅谈分词算法(2)基于词典的分词方法文中我们利用n-gram实现了基于词典的分词方法.在(1)中,我们也讨论了这种方法有的缺陷,就是OOV的问题,即对于未登录词会失效在,并简单介绍了如何基于字进行分词,本文着重阐述下如何利用HMM实现基于字的分…
前言 在浅谈分词算法(1)分词中的基本问题我们讨论过基于词典的分词和基于字的分词两大类,在浅谈分词算法(2)基于词典的分词方法文中我们利用n-gram实现了基于词典的分词方法.在(1)中,我们也讨论了这种方法有的缺陷,就是OOV的问题,即对于未登录词会失效在,并简单介绍了如何基于字进行分词,本文着重阐述下如何利用HMM实现基于字的分词方法. 目录 浅谈分词算法(1)分词中的基本问题浅谈分词算法(2)基于词典的分词方法浅谈分词算法(3)基于字的分词方法(HMM)浅谈分词算法(4)基于字的分词方法(…
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是语音处理工具Jays-PySPEECH诞生之语音识别实现. 语音识别是Jays-PySPEECH的核心功能,Jays-PySPEECH借助的是SpeechRecognition系统以及CMU Sphinx引擎来实现的语音识别功能,今天痞子衡为大家介绍语音识别在Jays-PySPEECH中是如何实现的. 一.SpeechRecognition系统简介 SpeechRecognition是一套基于python实现语音识别的系统,该系统的…
BILSTM+CRF中的条件随机场 tensorflow中crf关键的两个函数是训练函数tf.contrib.crf.crf_log_likelihood和解码函数tf.contrib.crf.viterbi_decode crf_log_likelihood(inputs, tag_indices, sequence_lengths, transition_params=None) Computes the log-likelihood of tag sequences in a CRF. A…
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 在本篇我们会讨论HMM模型参数求解的问题,这个问题在HMM三个问题里算是最复杂的.在研究这个问题之前,建议先阅读这个系列的前两篇以熟悉HMM模型和HMM的前向后向算法,以及EM算法原理总结,这些在本篇里会用到.在李航的<统计学习方法>中,这个算法的讲解只考虑了单个观测…
1. HMM模型参数求解概述 HMM模型参数求解根据已知的条件可以分为两种情况. 第一种情况较为简单,就是我们已知DD个长度为TT的观测序列和对应的隐藏状态序列,即{(O1,I1),(O2,I2),...(OD,ID)}{(O1,I1),(O2,I2),...(OD,ID)}是已知的,此时我们可以很容易的用最大似然来求解模型参数. 假设样本从隐藏状态qiqi转移到qjqj的频率计数是AijAij,那么状态转移矩阵求得为: A=[aij],其中aij=Aij∑s=1NAisA=[aij],其中ai…