http://poj.org/problem?id=2115 题意:对于C的循环(for i = A; i != B; i+=C)问在k位存储系统内循环多少次结束: 若循环有限次能结束输出次数,否则输出 FOREVER: 解:设x为循环次数:  (A+C*x)%2^k = B; 则 C*x+A = 2^k*y+B; 所以 C*x - 2^k*y = B-A; 类似于a*x+b*y = c (或 a*x = c(mod b))模线性方程的形式,所以可以根据扩展欧几里得算法解决 #include<s…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4020    Accepted Submission(s): 3091 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%99…
https://vjudge.net/problem/UVA-11768 题意: 给定两个点A(x1,y1)和B(x2,y2),均为0.1的整数倍.统计选段AB穿过多少个整点. 思路: 做了这道题之后对于扩展欧几里得有了全面的了解. 根据两点式公式求出直线 ,那么ax+by=c 中的a.b.c都可以确定下来了. 接下来首先去计算出一组解(x0,y0),因为根据这一组解,你可以写出它的任意解,其中,K取任何整数. 需要注意的是,这个 a' 和 b' 是很重要的,比如说 b' ,它代表的是x每隔 b…
求解形如ax+by == n (a,b已知)的方程的非负整数解个数时,需要用到扩展欧几里得定理,先求出最小的x的值,然后通过处理剩下的区间长度即可得到答案. 放出模板: ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; } ll lcm(ll a, ll b) { return a / gcd(a,b) * b; } ll extend_gcd(ll a,ll b,ll&x,ll&y) { if(!b) { x = ; y = ; retur…
http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化成 c*x = b-a mod (2^k), 解这个模线性方程的最小正整数解. 模板题,代码很短,但是很难理解的样子...转载了一些有关的资料... #include <stdio.h> #define LL long long LL Extend_Euclid(LL a,LL b,LL &…
题意:两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这两只青蛙分别叫做青…
题目:http://poj.org/problem?id=2115 就是扩展欧几里得呗: 然而忘记除公约数... 代码如下: #include<iostream> #include<cstdio> #include<cstring> using namespace std; typedef long long ll; ll A,B,C,k,a,b,x,y,g,s; ll gcd(ll a,ll b){return a%b?gcd(b,a%b):b;} void exgc…
题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod(2^k)的最小解.(真搞不懂为什么训练的时候好多人把青蛙的约会都给做出来了,这题却一直做不出来.. . . . 这两道不都是推公式然后变形吗. .... ) 代码例如以下: #include <iostream> #include <cstdio> #include <strin…
辗转相除法(欧几里得算法) 时间复杂度:在O(logmax(a, b))以内 int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } 扩展欧几里得算法 时间复杂度和欧几里得算法相同 int extgcd(int a, int b, int& x, int& y) { int d = a; if (b != 0) { d = extgcd(b, a % b, y, x); y -= (a / b) * x;…
C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 24355   Accepted: 6788 Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != B; variable += C) statement; I.e., a loop w…
C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20128 Accepted: 5405 Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != B; variable += C) statement; I.e., a loop which…
题目大意&&分析: for (variable = A; variable != B; variable += C) statement;这个循环式子表示a+c*n(n为整数)==b是停止循环,题目中要求(a+c*n)%2^k=b时停止循环:所以我们可以得到一个形如ax+by=c的方程式:a+c*n=b+2^k*m:通过移项:c*x-2^k*m=b-a:可以直接套exgcd模板了: 代码: #include <iostream> using namespace std; typ…
题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; typedef long l…
给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的. Input 输入2个数M, N中间用空格分隔(1 <= M < N <= 10^9) Output 输出一个数K,满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的. Sample Input 2 3 Sample Output 2 #include<stdio.h>…
http://poj.org/problem?id=1061 第一遍的写法: #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; long long x,y,m,n,l,j1,j2; long long gcd(long long a,long long b) { ?a:gcd(b,a%b); } void e…
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互质,所以这题就不能用传统解法了= = 其实还有种方法: 先来看只有两个式子的方程组: c≡b1 (mod a1) c≡b2 (mod a2) 变形得c=a1*x+b1,c=a2*x+b2 a1*x-a2*y=b2-b1 可以用扩展欧几里得求出x和y,进而求出c 那么多个式子呢?可以两个两个的迭代求.…
原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里得求出方程ax+by=tm的解x0.y0 然后有a*x0+b*y0=tm 令x1=x0*(c/tm),y1=y0*(c/tm) 则a*x1+b*y1=c x1.y1即原方程的一个特解 这个方程的通解:xi=x1+k*(b/m),yi=y1-k*(a/m) 另:如果要求yi的最小非负解?令r=a/tm…
https://vjudge.net/contest/218366#problem/J 第一步追及公式要写对:y+nk-(x+mk)=pL => (n-m)k+lp=x-y 可以看出扩展欧几里得原型,这里注意扩展欧几里得求出的是任意解,非最优,要推出最小解k. (n-m)x+ly=gcd => (n-m)(x*(x-y)/gcd) + l*y*(x-y)/gcd = x-y 则k = x*(x-y)/gcd(某一解非最小),由于k每次可转移t = l/gcd 最小解为(k%t+t)%t. #i…
<题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1).   Input 数据的第一行是一个T,表示有T组数据.每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9).   Output 对应每组数据输出(A/B)%9973.   Sample In…
容易发现,对于牌堆里第x张牌,在一次洗牌后会变成2*x%(n+1)的位置. 于是问题就变成了求x*2^m%(n+1)=L,x在[1,n]范围内的解. 显然可以用扩展欧几里得求出. # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include &l…
题目大意:给你两个球的坐标 他们都往(1, 1)这个方向以相同的速度走,问你他们在哪个位置碰撞. 思路:这种题目需要把x方向和y方向分开来算周期,两个不同周期需要用扩展欧几里得来求第一次相遇. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define pii pair<int, int> #define y1 skldjfs…
A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4252    Accepted Submission(s): 3277 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1).   Input 数据的第一行是一…
扩展欧几里得算法 求逆元就不说了. ax+by=c 这个怎么求,很好推. 设d=gcd(a,b) 满足d|c方程有解,否则无解. 扩展欧几里得求出来的解是 x是 ax+by=gcd(a,b)的解. 对于c的话只需要x*c/gcd(a,b)%(b/d)即可,因为b/d的剩余系更小. 为什么这样呢? 设a'=a/d,b'=b/d 求出a'x+b'y=1的解,两边同时乘d,然后x也是ax+by=d的解, 然后因为b'的剩余系更小,所以%b’ 中国剩余定理是合并线性方程组的 中国余数定理 转化为一个线性…
传送门 对于数论只会gcd的我,也要下定决心补数论了 列出方程 (x + t * m) % l = (y + t * n) % l 那么假设 这两个式子之间相差 num 个 l,即为 x + t * m = y + t * n + num * l 经过化简得 (n - m) * t + l * num = x - y 那么可以用扩展欧几里得求出结果 ——代码 #include <cstdio> #define LL long long inline void exgcd(LL a, LL b,…
题目出自 Codeforces Round #126 (Div. 2) 的E. 题意大致如下:给定a,b,c,s,求三个非负整数x,y,z,满足0<=x<=y<=z,ax+by+cz=s,使得f(x,y,z)=|ax-by|+|by-cz|最小 思路:枚举z,得到一个方程ax+by=s-cz,用扩展欧几里得求出这个方程的一个解,然后三分通解的整系数,求出最小f值.至于为什么可以三分画画图就清楚了,两个绝对值函数叠加在一起最多只有三种状态(第一维表示临界点较小的那个绝对值函数):(降,降)…
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+by=c 设tm=gcd(a,b) 若c%tm!=0,则该方程无整数解. 否则,列出方程: a*x0+b*y0=tm 易用extend_gcd求出x0和y0 然后最终的解就是x=x0*(c/tm),y=y0*(c/tm) 注意:若是要求最小非负整数解? 例如求y的最小非负整数解, 令r=a/tm,则…
题意:很明显,我就不说了 分析:令n=2^k,因为A,B,C<n,所以取模以后不会变化,所以就是求(A+x*C)%n=B 转化一下就是求 C*x=B-A(%n),最小的x 令a=C,b=B-A 原式等于ax=b(mod n) 这就是标准的解模线性方程 该方程有解的充要条件是d=gcd(n,a) && d|b(可以根据这一条判断是否FOREVER) 然后参考算法导论应用扩展欧几里得求解x a*x0+n*y0=d x=x0*(b/d)(mod n) 然后应用多解条件求最小正整数解,即解的…
题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> using namespace std; typedef long long LL; void extended_gcd(LL a,LL b,LL &d,LL &x,LL &y) { if(!b) { d=a,x=,y=; } else { extended_gcd(b,a%b,d,y,x…
题意大概是让你求(A+Cx) mod 2^k = B的最小非负整数解. 若(B-A) mod gcd(C,2^k) = 0,就有解,否则无解. 式子可以化成Cx + 2^k*y = B - A,可以用扩展欧几里得得到一组解. 设M=gcd(C,2^k),X=x*(B-A)/M 要想得到最小非负整数解的话,就是(X%(L/M)+L/M)%(L/M). 证明略. #include<cstdio> #include<algorithm> #include<iostream>…
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这两只青蛙分别叫做青蛙A和…