目录 问题 解决方法 模型选择 框架构建 Sigcomm'18 AuTO: Scaling Deep Reinforcement Learning for Datacenter-Scale Automatic Traffic Optimization 问题 主要问题:流量算法的配置周期长,人工配置难且繁复.人工配置的时间成本大,人为错误导致的性能降低. 要计算MLFQ的阈值参数是很麻烦的事情,先前有人构建了一个数学模型来优化这个阈值,在几个星期或者几个月更新一次阈值,更新周期过长. 可以使用DR…
这是一篇被ICLR 2019 接收的论文.论文讨论了如何利用场景先验知识 (scene priors)来定位一个新场景(novel scene)中未曾见过的物体(unseen objects).举例来说,在「厨房」这一场景中,有一张图片显示「苹果」在冰箱的储物架上,同为水果的物体,如「橙子」,会出现在场景的哪个位置呢?论文提出了用基于强化学习的方法来定位「橙子」. 论文:VISUAL SEMANTIC NAVIGATION USING SCENE PRIORS 论文作者:Wei Yang , X…
基于TORCS(C++)和Torch7(lua)实现自动驾驶端到端深度强化学习模型(A3C-连续动作)的训练 先占坑,后续内容有空慢慢往里填 训练系统框架 先占坑,后续内容有空慢慢往里填 训练系统核心模块解析 先占坑,后续内容有空慢慢往里填 Torch7与TORCS通信机制(基于linux共享内存) 先占坑,后续内容有空慢慢往里填 TORCS控制接口 先占坑,后续内容有空慢慢往里填 Torch7实现A3C连续动作模型 先占坑,后续内容有空慢慢往里填 训练流程 山西运煤车煤运西山 调参注意事项 上…
https://blog.csdn.net/Mbx8X9u/article/details/80780459 课程主页:http://rll.berkeley.edu/deeprlcourse/ 所有视频的链接:https://www.youtube.com/playlist?list=PLkFD6_40KJIznC9CDbVTjAF2oyt8_VAe3 由于文章较长,且有较多外链接,建议下载PDF版进行阅读 方式一 点击阅读原文即可下载 方式二 返回菜单栏,回复“20180622” 知识背景…
本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 2017-01-28 Yuxi Li 机器之心 选自arXiv 作者:Yuxi Li 编译:Xavier Massa.侯韵楚.吴攀   摘要 本论文将概述最近在深度强化学习(Deep Reinforcement Learning)方面喜人的进展.本文将从深度学习及强化学习的背景知识开始,包括了对实验平台的…
摘要:学习玩游戏一直是当今AI研究的热门话题之一.使用博弈论/搜索算法来解决这些问题需要特别地进行周密的特性定义,使得其扩展性不强.使用深度学习算法训练的卷积神经网络模型(CNN)自提出以来在图像处理领域的多个大规模识别任务上取得了令人瞩目的成绩.本文是要开发一个一般的框架来学习特定游戏的特性并解决这个问题,其应用的项目是受欢迎的手机游戏Flappy Bird,控制游戏中的小鸟穿过一堆障碍物.本文目标是开发一个卷积神经网络模型,从游戏画面帧中学习特性,并训练模型在每一个游戏实例中采取正确的操作.…
深度学习课程笔记(十四)深度强化学习 ---  Proximal Policy Optimization (PPO) 2018-07-17 16:54:51  Reference: https://blog.openai.com/openai-baselines-ppo/ Code: https://github.com/openai/baselines Paper: https://arxiv.org/pdf/1707.06347.pdf Video Tutorials: https://ww…
一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25  16:29:19   对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也给想学习的小伙伴一个参考. 想要认识清楚这个算法,需要对 DRL 的算法有比较深刻的了解,推荐大家先了解下 Deep Q-learning 和 Policy Gradient 算法. 我们知道,DRL 算法大致可以分为如下这几个类别:Value Based and Policy Based,其经典算…
一.存在的问题 DQN是一个面向离散控制的算法,即输出的动作是离散的.对应到Atari 游戏中,只需要几个离散的键盘或手柄按键进行控制. 然而在实际中,控制问题则是连续的,高维的,比如一个具有6个关节的机械臂,每个关节的角度输出是连续值,假设范围是0°~360°,归一化后为(-1,1).若把每个关节角取值范围离散化,比如精度到0.01,则一个关节有200个取值,那么6个关节共有20062006个取值,若进一步提升这个精度,取值的数量将成倍增加,而且动作的数量将随着自由度的增加呈指数型增长.所以根…
深度强化学习 基本概念 强化学习 强化学习(Reinforcement Learning)是机器学习的一个重要的分支,主要用来解决连续决策的问题.强化学习可以在复杂的.不确定的环境中学习如何实现我们设定的目标. 深度学习 深度学习(Deep Learning)也是机器学习的一个重要分支,也就是多层神经网络,通过多层的非线性函数实现对数据分布及函数模型的拟合.(从统计学角度来看,就是在预测数据分布,从数据中学习到一个模型,然后通过这个模型去预测新的数据) 深度强化学习 深度强化学习(Deep Re…