k邻近算法的伪代码: 对未知类别属性的数据集中的每个点一次执行以下操作: (1)计算已知类别数据集中的点与当前点之间的距离: (2)按照距离递增次序排列 (3)选取与当前点距离最小的k个点 (4)确定前k个点所在类别的出现频率 (5)返回前k个点出现频率最好的类别作为当前点的预测分类 python函数实现 ''' Created on Sep 16, 2010 kNN: k Nearest Neighbors Input: inX: vector to compare to existing d…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growth算法 FP-growth算法的性能很好,只需要扫描两次数据集,就能生成频繁项集.但不能用于发现关联规则. 我想应该可以使用Apriori算法发现关联规则. FP代表频繁模式(Frequent Pattern). 条件模式基(conditional pattern base). 条件模式基是以所查找元素项为结…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析. 基本概念 关联分析(association analysis)或者关联规则学习(association rule learning) 这是非监督学习的一个特定的目标:发现数据的关联(association)关系.简单的说,就是那些数据(或者数据特征)会一起出现. 关联分析的目标包括两项:发现频繁项集和发现关联规则.首先需要找到频繁项集,然后才能…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是,有时会发现生成的算法\(f(x)\)的错误率比较高,只使用这个算法达不到要求. 这时\(f(x)\)就是一个弱算法. 在以前学习算法的过程中,我们认识到算法的参数很重要,所以把公式改写成这样: \[ f(x,arguments) \\ where \\ \qquad x \text{ : calculated…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 降维技术的用途 使得数据集更易使用: 降低很多算法的计算开销: 去除噪声: 使得结果易懂. 基本概念 降维(dimensionality reduction). 如果样本数据的特征维度很大,会使得难以分析和理解.我们可以通过降维技术减少维度. 降维技术并不是将影响少的特征去掉,而是将样本数据集转换成一个低维度…
一 k近邻算法原理 k近邻算法是一种基本分类和回归方法. 原理:K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中. 如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据.这也就是我们的目的,来了一个新的数据点,我要得到它的类别是什么?好的,下面我们根据k近邻的思想来给绿色圆点进行分类. 如果K=3,绿色圆点的最邻近的3…
knn算法: 1.优点:精度高.对异常值不敏感.无数据输入假定 2.缺点:计算复杂度高.空间复杂度高. 3.适用数据范围:数值型和标称型. 一般流程: 1.收集数据 2.准备数据 3.分析数据 4.训练算法:不适用 5.测试算法:计算正确率 6.使用算法:需要输入样本和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理. 2.1.1 导入数据 operator是排序时要用的 from numpy import * import operato…
原文地址: https://www.cnblogs.com/steven-yang/p/5686473.html ----------------------------------------------------------------------------------------------------------------- 前言 最近在看Peter Harrington写的“机器学习实战”,这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 这个思路称之…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第6章:SVM 支持向量机. 支持向量机不是很好被理解,主要是因为里面涉及到了许多数学知识,需要慢慢地理解.我也是通过看别人的博客理解SVM的. 推荐大家看看on2way的SVM系列: 解密SVM系列(一):关于拉格朗日乘子法和KKT条件 解密SVM系列(二):SVM的理论基础 解密SVM系列(三):SMO算法原理与实战求解 解密SVM系列(四):SVM非线性分类原理实验 基本概念 SVM -…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第14章 - 利用SVD简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 基本概念 降维(dimensionality reduction). 如果样本数据的特征维度很大,会使得难以分析和理解.我们可以通过降维技术减少维度. 降维技术并不是将影响少的特征去掉,而是将样本数据集转换成一个低维度的数据集. 降维技术的用途 使得数据集更易使用: 降低很多算法的计算开销: 去除噪声: 使得结…