一.环境搭建 1. <OD大数据实战>Hadoop伪分布式环境搭建 2. <OD大数据实战>Hive环境搭建 3. <OD大数据实战>Sqoop入门实例 4. <OD大数据实战>Flume入门实例 5. <OD大数据实战>Kafka入门实例 6. <OD大数据实战>Oozie环境搭建 7. <OD大数据实战>HBase环境搭建 二.数据分析平台架构 https://www.processon.com/diagraming/…
一.环境搭建 1.  下载安装配置 <OD大数据实战>Hadoop伪分布式环境搭建 2. Hadoop配置信息 1)${HADOOP_HOME}/libexec:存储hadoop的默认环境变量信息 (1)hadoop-config.sh (2)hdfs-config.sh (3)mapred-config.sh (4)yarn-config.sh (5)httpfs-config.sh & kms-config.sh 2)${HADOOP_HOME}/etc/hadoop:搭建环境时配…
一.搭建hadoop环境 <OD大数据实战>hadoop伪分布式环境搭建 二.Hive环境搭建 1. 准备安装文件 下载地址: http://archive.cloudera.com/cdh5/cdh/5/ hive-0.13.1-cdh5.3.6.tar.gz 2. 解压 -cdh5.3.6.tar.gz -C /opt/modules/cdh/ 3. 修改配置 cd /opt/modules/cdh/hive--cdh5.3.6/conf mv hive-env.sh.template h…
大数据应用日志采集之Scribe演示实例完全解析 引子: Scribe是Facebook开源的日志收集系统,在Facebook内部已经得到大量的应用.它能够从各种日志源上收集日志,存储到一个中央存储系统(可以是NFS,分布式文件系统等)上,以便于进行集中统计分析处理.它为日志的“分布式收集,统一处理”提供了一个可扩展的,高容错的方案.当中央存储系统的网络或者机器出现故障时,scribe会将日志转存到本地或者另一个位置,当中央存储系统恢复后,scribe会将转存的日志重新传输给中央存储系统.其通常…
大数据应用日志采集之Scribe 安装配置指南 大数据应用日志采集之Scribe 安装配置指南 1.概述 Scribe是Facebook开源的日志收集系统,在Facebook内部已经得到大量的应用.它能从各种日志源收集日志,存储到一个中央存储系统上,便于进行集中统计分析处理.它为日志的”分布式收集,统一处理”提供了一个可扩展的,高容错的方案.scribe代码很简单,但是安装配置却很复杂,本文记录了作者实际的一次安装的过程,感觉真是不一般的琐碎,另外Scribe开源社区的版本已经是几年前的版本了,…
本文来自 网易云社区 . Join操作是数据库和大数据计算中的高级特性,大多数场景都需要进行复杂的Join操作,本文从原理层面介绍了SparkSQL支持的常见Join算法及其适用场景. Join背景介绍 Join是数据库查询永远绕不开的话题,传统查询SQL技术总体可以分为简单操作(过滤操作-where.排序操作-limit等),聚合操作-groupby以及Join操作等.其中Join操作是最复杂.代价最大的操作类型,也是OLAP场景中使用相对较多的操作.因此很有必要对其进行深入研究. 另外,从业…
1. Logstash概述 Logstash的官网地址为:https://www.elastic.co/cn/products/logstash,以下是官方对Logstash的描述. Logstash是与Flume类似,也是一种数据采集工具,区别在于组件和特性两大方面.常用的数据采集工具有Sqoop.Flume.Logstash,计划将单独写一篇博文论述它们之间的区别,所以这里就不赘述,感兴趣可关注后期的博文. 2. Kafka概述 Kafka的官网是:http://kafka.apache.o…
http://www.aboutyun.com/thread-6855-1-1.html 个人观点:大数据我们都知道hadoop,但并不都是hadoop.我们该如何构建大数据库项目.对于离线处理,hadoop还是比较适合的,但是对于实时性比较强的,数据量比较大的,我们可以采用Storm,那么Storm和什么技术搭配,才能够做一个适合自己的项目.下面给大家可以参考.可以带着下面问题来阅读本文章:1.一个好的项目架构应该具备什么特点?2.本项目架构是如何保证数据准确性的?3.什么是Kafka?4.f…
摘抄至http://blog.jobbole.com/46673/ 随着BIG DATA大数据概念逐渐升温,如何搭建一个能够采集海量数据的架构体系摆在大家眼前.如何能够做到所见即所得的无阻拦式采集.如何快速把不规则页面结构化并存储.如何满足越来越多的数据采集还要在有限时间内采集.这篇文章结合我们自身项目经验谈一下. 我们来看一下作为人是怎么获取网页数据的呢? 1.打开浏览器,输入网址url访问页面内容.2.复制页面内容的标题.作者.内容.3.存储到文本文件或者excel. 从技术角度来说整个过程…
相关文章: 大数据系列之Kafka安装 大数据系列之Flume--几种不同的Sources 大数据系列之Flume+HDFS 关于Flume 的 一些核心概念: 组件名称     功能介绍 Agent代理 使用JVM 运行Flume.每台机器运行一个agent,但是可以在一个agent中包含多个sources和sinks. Client客户端 生产数据,运行在一个独立的线程. Source源 从Client收集数据,传递给Channel. Sink接收器 从Channel收集数据,进行相关操作,…