Druid和Spark对比】的更多相关文章

Druid和Spark对比 不是Spark专家, 如果描绘有错误, 请通过邮件列表或者其他方式告知我们 Spark实现弹性的分布式数据集概念的计算集群系统, 可以看做商业分析平台. RDDs能复用持久化到内存中的数据, 从而为迭代算法提供更快的计算速度. 这对一些工作流例如机器学习格外有用, 有些操作需要重复执行很多次才能达到结果的最终收敛.  Spark 提供了大量的算法用来查询和分析大量数据. Druid 被设计成增强的分析应用, 重点关注注入数据和查询数据的延时问题.  如果你开发了WEB…
背景 这两年互联网行业掀着一股新风,总是听着各种高大上的新名词.大数据.人工智能.物联网.机器学习.商业智能.智能预警啊等等. 以前的系统,做数据可视化,信息管理,流程控制.现在业务已经不仅仅满足于这种简单的管理和控制了.数据可视化分析,大数据信息挖掘,统计预测,建模仿真,智能控制成了各种业务的追求. “所有一切如泪水般消失在时间之中,时间正在死去“,以前我们利用互联网解决现实的问题.现在我们已经不满足于现实,数据将连接成时间序列,可以往前可以观其历史,揭示其规律性,往后可以把握其趋势性,预测其…
作为一名程序员通病就是不安分,对业界的技术总要折腾一番,哪怕在最终实际工作中应用到的就那么一点.最近自己准备入门Storm学习,关于流式大数据框架目前比较流行的有Spark和Storm等,在入门之前,先对两种框架做个基本的对比,便于后期学习中更加深入的理解各自的应用场景以及优劣.关于Storm和Spark的对比主要从网络和书本搜索得到,基本比较如下: 对比方面 Storm Spark Streaming 是否实时模型 纯实时 准实时 实时计算延时度 毫秒级 秒级 吞吐量 低 高 事务机制 支持且…
Hadoop进行海量数据分析,MR频繁落地,IO操作,计算时间就拉长.由于这种设计影响,计算过程中不能进行迭代计算.造成网络节点数据传输. Spark从理念上就开始改变.应用scala特点解决上面的核心问题,提升处理速度.Spark基于内存来实现,内存访问效率比磁盘访问效率高非常多.Spark不能完全基于内存,(所有要加工的数据都放入内存),部分数据也需要落地.一部分数据放在内存中,进行计算,计算中间结果有些不落地,直接放在内存,以val静态常量实现,新的RDD方式来存在.可以实现迭代式计算.…
Spark:快速的通用的分布式计算框架 概述和特点: 1) Speed,(开发和执行)速度快.基于内存的计算:DAG(有向无环图)的计算引擎:基于线程模型: 2)Easy of use,易用 . 多语言(Java,python,scala,R); 多种计算API可调用:可在交互式模式下运行: 3)Generality  通用.可以一站式解决多个不同场景的应用业务 Spark Streaming :用来做流处理 MLlib : 用于机器学习 GraphX:用来做图形计算的 4) Runs Ever…
Druid的发送数据和查询数据 Druid 开篇 - 大数据实时探索性分析平台 官网 Druid 一次海量数据实时处理的实践 使用HDFS作为Druid的deepStorage 在哪里下载druid 正式版本下载:maven中央仓库: http://central.maven.org/maven2/com/alibaba/druid/ 怎么获取Druid的源码 Druid是一个开源项目,源码托管在github上,源代码仓库地址是 https://github.com/alibaba/druid.…
Apache Kyuubi(Incubating)(下文简称Kyuubi)是⼀个构建在Spark SQL之上的企业级JDBC网关,兼容HiveServer2通信协议,提供高可用.多租户能力.Kyuubi 具有可扩展的架构设计,社区正在努力使其能够支持更多通信协议(如 RESTful. MySQL)和计算引擎(如Flink). Kyuubi的愿景是让大数据平民化.一个的典型使用场景是替换HiveServer2,帮助企业把HiveQL迁移到Spark SQL,轻松获得10~100倍性能提升(具体提升…
Spark之命令 1.spark运行模式有4种: a.local 多有用测试, b. standalone:spark 集群模式,使用spark自己的调度方式. c. Yarn: 对MapreduceV1升级的经典版本,支持spark. d.Mesos:类似Yarn的资源调度框架,提供了有效的.跨分布式应用或框架的资源隔离和共享,可以运行hadoop.spark等框架 2.spark local 模式(shell ) Spark local模式(shell运行) windows: 执行spark…
什么是Spark 大数据计算框架 离线批处理 大数据体系架构图(Spark) Spark包含了大数据领域常见的各种计算框架:比如Spark Core用于离线计算,Spark SQL用于交互式查询,Spark Streaming用于实时流式计算,Spark MLib用于机器学习,Spark GraphX用于图计算 Spark主要用于大数据的计算,而Hadoop以后主要用于大数据的存储(比如HDFS.Hive.HBase)等,,以及资源调度(Yarn) Spark+hadoop的组合是大数据领域最热…
Why Scala 在数据集不是很大的时候,开发人员可以使用python.R.MATLAB等语言在单机上处理数据集.但是在大数据时代,数据集少说都是TB.PB级别,此时便需要分布式地处理.相较于上述语言,Scala有着现成的框架即Spark能分布式地处理问题,Scala中有着丰富的Spark API,开发时只需要进行函数的编写就能轻松解决各种需求.虽然其他语言也有Spark的API,比如python的pySpark,但是逊色于Spark对Scala的支持,毕竟Spark是用Scala开发出来的.…
前言 上文已经介绍了与Spark 息息相关的MapReduce计算模型,那么相对的Spark的优势在哪,有哪些适合大数据的生态呢? Spark对比MapReduce,Hive引擎,Storm流式计算引擎 1.如果数据超过1T了基本就不能用spark了,还是会选择MapReduce,MapReduce利用磁盘的高I/O操作实现并行计算确实在处理海量数据是无法取代的,但它在迭代计算中性能不足.(如果数据过大,OOM内存溢出等等,spark的程序就无法运行了,直接就会报错挂掉了,这个很坑爹是吧,虽然M…
导读:本文将描述 Apache Druid 的基本集群架构,说明架构中各进程的作用.并从数据写入和数据查询两个角度来说明 Druid 架构的工作流程. 关注公众号 MageByte,设置星标点「在看」是我们创造好文的动力.公众号后台回复 "加群" 进入技术交流群获更多技术成长. Druid 是多进程架构,每种进程类型都可以独立配置,独立扩展.这样可以为集群提供最大的灵活度.这种设计还提供了强失效容忍:一个失效的组件不会立即影响另外的组件. 下面我们来深入了解 Druid 有哪些进程类型…
导读:首先你将通过这篇文章了解到 Apache Druid 底层的数据存储方式.其次将知道为什么 Apache Druid 兼具数据仓库,全文检索和时间序列的特点.最后将学习到一种优雅的底层数据文件结构. 今日格言:优秀的软件,从模仿开始的原创. 了解过 Apache Druid 或之前看过本系列前期文章的同学应该都知道 Druid 兼具数据仓库,全文检索和时间序列的能力.那么为什么其可以具有这些能力,Druid 在实现这些能力时做了怎样的设计和努力? Druid 的底层数据存储方式就是其可以实…
交互式计算引擎MOLAP篇 摘自:<大数据技术体系详解:原理.架构与实践> MOLAP是一种通过预计算cube方式加速查询的OLAP引擎,它的核心思想是“空间换时间”,典型代表包括Druid和Kylin. 一.Druid简介 Druid是一个用于大数据实时查询和分析的高容错,高性能开源分布式OLADP系统,旨在快速处理大规模的数据,并能够实现快速查询和分析. Durid是基于列存储的,其设计之初主要目的是存储时间序列数据,因此数据强制按照时间分隔不同的数据段(segment),除了时间戳以外,…
经过多年信息化建设,我们已经进入一个神奇的“大数据”时代,无论是在通讯社交过程中使用的微信.QQ.电话.短信,还是吃喝玩乐时的用到的团购.电商.移动支付,都不断产生海量信息数据,数据和我们的工作生活密不可分.须臾难离. >>>> 什么是大数据 什么是大数据,多大算大,100G算大么?如果是用来存储1080P的高清电影,也就是几部影片的容量.但是如果100G都是文本数据,比如云智慧透视宝后端kafka里的数据,抽取一条mobileTopic的数据如下:[107,55053230546…
1.MapReduce 理解 拆分成 map 过程与 reduce 过程: map 可以理解为sql 中的 group by 操作, reduce相当于group by 后的聚合计算 : 一个map 必须对应一个 reduce map后会存在 hdfs 中,然后再进行 reduce 2.MapReduce 与 spark 对比 用hdfs来作为中间介质(map后的结果存储),spark是用内存来作为中间介质 MapReduce不的支持流水线作业(就是reduce 必须等待map完后才能工作,不能…
目录 impala的简单介绍 概述 优点 缺点 impala和Hive的关系 impala如何和CDH一起工作 impala的架构及查询计划 impala/hive/spark 对比 impala的安装部署 安装环境准备 下载impala的所有依赖包 挂载磁盘 上传压缩包并解压 制作本地yum源 开始安装impala 所有节点配置impala impala的简单介绍 概述 有两个关于impala介绍的网址: https://docs.cloudera.com/documentation/ente…
转自infoQ! 根据 O’Reilly 2016年数据科学薪资调查显示,SQL 是数据科学领域使用最广泛的语言.大部分项目都需要一些SQL 操作,甚至有一些只需要SQL. 本文涵盖了6个开源领导者:Hive.Impala.Spark SQL.Drill.HAWQ 以及Presto,还加上Calcite.Kylin.Phoenix.Tajo 和Trafodion.以及2个商业化选择Oracle Big Data SQL 和IBM Big SQL,IBM 尚未将后者更名为“Watson SQL”.…
hadoop之Spark强有力竞争者Flink,Spark与Flink:对比与分析 Spark是一种快速.通用的计算集群系统,Spark提出的最主要抽象概念是弹性分布式数据集(RDD),它是一个元素集合,划分到集群的各个节点上,可以被并行操作.而Flink是可扩展的批处理和流式数据处理的数据处理平台. Apache Flink,apache顶级项目,是一个高效.分布式.基于Java实现的通用大数据分析引擎,它具有分布式 MapReduce一类平台的高效性.灵活性和扩展性以及并行数据库查询优化方案…
对比点 Storm Spark Streaming 实时计算模型 纯实时,来一条数据,处理一条数据 准实时,对一个时间段内的数据收集起来,作为一个RDD,再处理 实时计算延迟度 毫秒级 秒级 吞吐量 低 高 事务机制 支持完善 支持,但不够完善 健壮性 / 容错性 ZooKeeper,Acker,非常强 Checkpoint,WAL,一般 动态调整并行度 支持 不支持  Spark Streaming与Storm的应用场景 对于Storm来说:1.建议在那种需要纯实时,不能忍受1秒以上延迟的场景…
2013年参与开发了一个类似storm的自研系统, 2014年使用过spark 4个多月,对这两个系统都有一些了解. 下面是我关于这两个系统的简单对比: Spark: 1. 基于数据并行,https://en.wikipedia.org/wiki/Data_parallelism.相同的操作作用在数据的不同部分,利用transformation的pipeline提高性能. 2. 本质上是batch processing,latency 通常> 1s. 3. RDD是spark的核心,封装了分布式…
关于PageRank的地位,不必多说. 主要思想:对于每个网页,用户都有可能点击网页上的某个链接,例如 A:B,C,D B:A,D C:AD:B,C 由这个我们可以得到网页的转移矩阵      A    B    C    D A  0    1/2  1    0 B 1/3   0    0    0 C 1/3  1/2  0    0 D 1/3  0     0    1/2   Aij表示网页j到网页i的转移概率.假设起始状态每个用户对ABCD四个网站的点击概率相同都是0.25,那么…
Spark与Hadoop对比 什么是Spark Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点:但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法.其架构如下图所示: Spark与Hadoop对比 S…
在数据挖掘中,Python和Scala语言都是极受欢迎的,本文总结两种语言在Spark环境各自特点. 本文翻译自  https://www.dezyre.com/article/Scala-vs-Python-for-apache-Spark/213 1.性能对比 由于Scala是基于JVM的数据分析和处理,Scala比Python快10倍.当编写Python代码用且调用Spark库时,性能是平庸的,但如果程序涉及到比Python编码还要多的处理时,则要比Scala等效代码慢得多.Python解…
本文由  网易云发布. 1.Flink架构及特性分析 Flink是个相当早的项目,开始于2008年,但只在最近才得到注意.Flink是原生的流处理系统,提供high level的API.Flink也提供 API来像Spark一样进行批处理,但两者处理的基础是完全不同的.Flink把批处理当作流处理中的一种特殊情况.在Flink中,所有 的数据都看作流,是一种很好的抽象,因为这更接近于现实世界. 1.1 基本架构 下面我们介绍下Flink的基本架构,Flink系统的架构与Spark类似,是一个基于…
转自:https://www.cnblogs.com/reed/p/7730329.html 今天看到一篇讲得比较清晰的框架对比,这几个框架的选择对于初学分布式运算的人来说确实有点迷茫,相信看完这篇文章之后应该能有所收获. 简介 大数据是收集.整理.处理大容量数据集,并从中获得见解所需的非传统战略和技术的总称.虽然处理数据所需的计算能力或存储容量早已超过一台计算机的上限,但这种计算类型的普遍性.规模,以及价值在最近几年才经历了大规模扩展. 在之前的文章中,我们曾经介绍过有关大数据系统的常规概念.…
一.spark写入hbase hbase client以put方式封装数据,并支持逐条或批量插入.spark中内置saveAsHadoopDataset和saveAsNewAPIHadoopDataset两种方式写入hbase.为此,将同样的数据插入其中对比性能. 依赖如下: <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core --> <dependency> <groupId>org.…
在上一篇文章中 Spark源码系列:DataFrame repartition.coalesce 对比 对DataFrame的repartition.coalesce进行了对比,在这篇文章中,将会对RDD的repartition.coalesce进行对比. RDD重新分区的手段与DataFrame类似,有repartition.coalesce两个方法 repartition def repartition(numPartitions: Int): JavaRDD[T] /** * Return…
spark总结 1.Spark的特点: 高可伸缩性 高容错 基于内存计算 支持多种语言:java,scala,python,R 高质量的算法,比MapReduce快100倍 多种调度引擎:可以运行于YARN,Mesos,standalone 等. 2.spark的提供的功能 以及应用场景 spark功能模块 应用场景 RDD 离线数据处理 Spark SQL, DataFrames and Datasets 结构化的关系数据运算 Structured Streaming 结构化流:统一批处理与流…
http://www.cnblogs.com/jerrylead/archive/2012/08/13/2636149.html Hadoop vs Spark性能对比 基于Spark-0.4和Hadoop-0.20.2 1. Kmeans 数据:自己产生的三维数据,分别围绕正方形的8个顶点 {0, 0, 0}, {0, 10, 0}, {0, 0, 10}, {0, 10, 10}, {10, 0, 0}, {10, 0, 10}, {10, 10, 0}, {10, 10, 10} Poin…