首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
bzoj 3501 PA2008 Cliquers Strike Back——贝尔数
】的更多相关文章
bzoj 3501 PA2008 Cliquers Strike Back——贝尔数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3501 用贝尔三角形 p^2 地预处理 p 以内的贝尔数.可以模(mod-1)(它是每个分解下的质因子的倍数,所以不影响分开算的时候). 用公式:\( Bell[n+p^{m}]=m*Bell[n]+Bell[n+1] (mod p) \) \( Bell[n+p]=Bell[n]+Bell[n+1] (mod p) \) 把 n 看成 p 进制,O( p^2 * log m ) 地算. 大…
bzoj 3501 PA2008 Cliquers Strike Back —— 贝尔数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3501 用贝尔三角预处理贝尔数,拆模数并在 \( p \) 进制下使用公式,因为这样每次角标增加的是 \( p^{k} \): 循环使用数组非常优美!0~p 的角标背后是许多 \( p \) 的整数次幂,而角标那个数字是它的 \( p^0 \) 上的数,所以最后取 \( b[d[0]] \): Claris 写得太好了!http://www.cnblogs.com/clrs97/p/4714…
BZOJ3501 : PA2008 Cliquers Strike Back
\[\begin{eqnarray*}ans&=&m^{\sum_{i=1}^n Stirling2(n,i)\bmod 999999598}\bmod 999999599\\&=&m^{B_n\bmod 999999598}\bmod 999999599\end{eqnarray*}\] 999999598=2*13*5281*7283,对于每个小质数依次计算,最后用中国剩余定理合并即可. 对于贝尔数,有 \[\begin{eqnarray*}B_{p+n}&\e…
贝尔数(来自维基百科)& Stirling数
贝尔数 贝尔数以埃里克·坦普尔·贝尔(Eric Temple Bell)为名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列): Bell Number Bn是基数为n的集合的划分方法的数目.集合S的一个划分是定义为S的两两不相交的非空子集的族,它们的并是S.例如B3 = 5因为3个元素的集合{a, b, c}有5种不同的划分方法: {{a}, {b}, {c}} {{a}, {b, c}} {{b}, {a, c}} {{c}, {a, b}} {{a, b, c}}…
HDU 2512 一卡通大冒险(第二类斯特林数+贝尔数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2512 题目大意:因为长期钻研算法, 无暇顾及个人问题,BUAA ACM/ICPC 训练小组的帅哥们大部分都是单身.某天,他们在机房商量一个绝妙的计划"一卡通大冒险".这个计划是由wf最先提出来的,计划的内容是,把自己的联系方式写在校园一卡通的背面,然后故意将自己的卡"遗失"在某处(如水房,TD,食堂,主M....)他们希望能有MM看到他们遗失卡,能主动跟他们联系,这样就…
贝尔数--Codeforces908E. New Year and Entity Enumeration
给n<=50个长度m<=1000的二进制数,记他们为集合T,求满足下面条件的集合S数:令$M=2^m-1$,1.$a \epsilon S \Rightarrow a \ \ xor \ \ M \epsilon S$:2.$a \epsilon S,b \epsilon S \Rightarrow a \ \ and \ \ b \epsilon M$:3.$T \subseteq S$:4.S中每个数都<=M.答案膜1e9+7. 首先不看这T个数,先想想自由状态下有多少个S.由条件1…
hdu2643&&hdu2512——斯特林数&&贝尔数
hdu2643 题意:$n$ 个人的排名情况数($n \leq 100$) 分析:考虑 $n$ 个有区别的球放到 $m$ 个有区别的盒子里.无空盒的方案数为 $m!\cdot S(n, m)$. 这题中 $m$ 可取 $1 \sim n$(可能排名相同),累加即可. #include<bits/stdc++.h> using namespace std; typedef long long ll; +; ; int Sti[maxn][maxn], fact[maxn]; //第二类司特林数.…
hdu4767 Bell——求第n项贝尔数
题意 设第 $n$ 个Bell数为 $B_n$,求 $B_n \ mod \ 95041567$.($1 \leq n \leq 2^{31}$) 分析 贝尔数的概念和性质,维基百科上有,这里用到两点. 若 $p$ 是任意素数,有 $B_{p+n} = B_n + B_{n+1}(mod \ p)$ 每个贝尔数都是相应第二类斯特林数之和,即 $B_n = \sum_{k=1}^nS(n, k)$ 贝尔数的这个递推式只适合质数,我们可以将模数拆成质数,然后用CRT合并. $95041567…
BZOJ.2159.Crash的文明世界(斯特林数 树形DP)
BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis(x,i)^K\). \(n\leq50000,\ k\leq150\). \(Solution\) 和其它求\(x^k\)的题一样,依旧用第二类斯特林数展开.(二项式定理依旧可以得到部分分,依旧不想看=-=) \[\begin{aligned}S(x)&=\sum_{i=1}^ndis(x,i)^K…
BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )
打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... ---------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> using names…