cv论文(Low-rank相关)】的更多相关文章

最近发现很多以前看的论文都忘了,所以想写点东西来整理下之前的paper,paper主要是cv(computer vision)方向的. 第一篇:Gradient-based learning applied to document recognition.这是1998年Yann Lecun的一篇大作,是研究CNN必看的一篇文章.文中提出的Le-Net5模型很好的识别了Mnist的手写体,此模型也被用到了很多银行的钞票识别上.下面来研究这篇paper的成果.文章参考:http://blog.csd…
最近把以前的几篇关于Low-rank的文章重新看了一遍,由于之前的一些积累,重新看一遍感觉收获颇多.写这篇博文的时候也参考了一些网上的博客,其中数这篇博文最为经典http://blog.csdn.net/abcjennifer/article/details/8572994.Rachel-zhang这个博客牛人,相信搞CV的都不陌生吧,研究生期间能有这么多积累确实难得,能把自己所学一点一滴的记录下来,这就更不容易了.科研无止境,希望以后我的博客也能像各位前辈一样,越写越好.如有人读了我的博客感觉…
Generalized Low Rank Approximations of Matrices JIEPING YE*jieping@cs.umn.edu Department of Computer Science & Engineering,University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA Published online:12 August 2005         Abstract.The problem of…
上个博文我讲了一些CNN相关的论文,比较浅显都是入门知识,这节课来总结一些稀疏表示方面的文章.至于上个博文说到的要讲的sparse coding的知识,我将会放在Deep Learning的专题里面讲解.好了,闲话不多说,下面还是列出几篇我看过的sparse representation方面的论文. 第一篇:Robust Face Recognition via Sparse Representation,这是08年马毅等发表PAMI上的一篇文中,利用稀疏表达识别人脸,打开Google Scho…
这是期刊论文的版本,不是会议论文的版本.看了论文之后,只能说,太TM聪明了.膜拜~~ 视频的表示方法有很多,一般是把它看作帧的序列.论文提出一种新的方法去表示视频,用ranking function的参数编码视频的帧序列.它使用一个排序函数(ranking function)主要基于这样的假设:帧的appearance的变化与时间相关,如果帧vt+1在vt后面,则定义:此外,假设同一动作的视频帧序列,学习到的排序函数的参数,应该的大致一致的.但实际上,后面的假设并没有给出严格的证明,只能说实验的…
论文分享--- >Learning to Rank: From Pairwise Approach to Listwise Approach 学习排序 Learning to Rank 小结 [学习排序] Learning to Rank 中Listwise关于ListNet算法讲解及实现 LTR中单文档方法是将训练集里每一个文档当做一个训练实例,文档对方法是将同一个查询的搜索结果里任意两个文档对作为一个训练实例,文档列方法是将一个查询里的所有搜索结果列表作为一个训练实例.…
初次接触Captioning的问题,第一印象就是Andrej Karpathy好聪明.主要从他的两篇文章开始入门,<Deep Fragment Embeddings for Bidirectional Image Sentence Mapping>和<Deep Visual-Semantic Alignments for Generating Image Descriptions>.基本上,第一篇文章看明白了,第二篇就容易了,研究思路其实是一样的.但确实,第二个模型的功能更强大一些…
论文的重点在于后面approximation部分. 在<Rank Pooling>的论文中提到,可以通过训练RankSVM获得参数向量d,来作为视频帧序列的representation.而在dynamic论文中发现,这样的参数向量d,事实上与image是同等大小的,也就是说,它本身是一张图片(假如map与image同大小而不是提取的特征向量),那么就可以把图片输入到CNN中进行计算了.如下图可以看到一些参数向量d pooling的样例 参数向量d的快速计算 把计算d的过程定义一个函数.一个近似…
目的: 提升深度神经网络的性能. 一般方法带来的问题: 增加网络的深度与宽度. 带来两个问题: (1)参数增加,数据不足的情况容易导致过拟合 (2)计算资源要求高,而且在训练过程中会使得很多参数趋向于0,浪费计算资源. 解决方法: 使用稀疏连接替代稠密结构. 理论依据(Arora):一个概率分布可以用一个大的稀疏的深度神经网络表示,最优的结构的构建通过分析上层的激活状态的统计相关性,并把输出高度相关的神经元聚合.这与生物学中Hebbian法则“有些神经元响应基本一致,即同时兴奋或抑制”一致. 存…
由RCNN到FAST RCNN一个很重要的进步是实现了多任务的训练,但是仍然使用Selective Search算法来获得ROI,而FASTER RCNN就是把获得ROI的步骤使用一个深度网络RPN来实现.一个FASTER RCNN可以看作是一个RPN + FAST RCNN的组合,两者通过共享CONV LAYERS组合在一起. RPN网络 一张图片先经过CONV LAYERS得到feature map,图片的大小是任意的.然后,使用一个小的滑动网络,它与feature map的一个n*n的小窗…