【tf.keras】使用手册】的更多相关文章

目录 0. 简介 1. 安装 1.1 安装 CUDA 和 cuDNN 2. 数据集 2.1 使用 tensorflow_datasets 导入公共数据集 2.2 数据集过大导致内存溢出 2.3 加载 cifar10 数据时报错 3. 评价指标 3.1 实现 F1 socre.precsion.recall 4. 优化器 4.1 AdamW 优化器示例程序 4.2 tf.keras 1.x 在使用 learning rate decay 时不要使用 tf.train 内的优化器 5. 模型 5.1…
本次使用的是2.0测试版,正式版估计会很快就上线了 tf2好像更新了蛮多东西 虽然教程不多 还是找了个试试 的确简单不少,但是还是比较喜欢现在这种写法 老样子先导入库 import tensorflow as tf import tensorflow_datasets as tfds import numpy as np import matplotlib.pyplot as plt import math import tqdm import tqdm.auto tqdm.tqdm = tqd…
目录 从 PyTorch 中导出模型参数 第 0 步:配置环境 第 1 步:安装 MMdnn 第 2 步:得到 PyTorch 保存完整结构和参数的模型(pth 文件) 第 3 步:导出 PyTorch 模型的参数,保存至 hdf5 文件 可能遇到的问题 验证从 PyTorch 导出的 AlexNet 预训练模型 Attentions References tf.keras 的预训练模型都放在了'tensorflow.python.keras.applications' 目录下,在 tensor…
cifar-10 每张图片的大小为 32×32,而 AlexNet 要求图片的输入是 224×224(也有说 227×227 的,这是 224×224 的图片进行大小为 2 的 zero padding 的结果),所以一种做法是将 cifar-10 数据集的图片 resize 到 224×224. 此时遇到的问题是,cifar-10 resize 到 224×224 时,32G 内存都将无法完全加载所有数据,在归一化那一步(即每个像素点除以 255)就将发生 OOM(out of memory)…
tf.keras.metric 里面竟然没有实现 F1 score.recall.precision 等指标,一开始觉得真不可思议.但这是有原因的,这些指标在 batch-wise 上计算都没有意义,需要在整个验证集上计算,而 tf.keras 在训练过程中计算 acc.loss 都是一个 batch 计算一次的,最后再平均起来.Keras 2.0 版本将 precision, recall, fbeta_score, fmeasure 等 metrics 移除了. 虽然 tf.keras.me…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
TensorFlow 2.0 版本将 keras 作为高级 API,对于 keras boy/girl 来说,这就很友好了.tf.keras 从 1.x 版本迁移到 2.0 版本,需要修改几个地方. 1. 设置随机种子 import tensorflow as tf # TF 1.x tf.set_random_seed(args.seed) # TF 2.0 tf.random.set_seed(args.seed) 2. 设置并行线程数和动态分配显存 import tensorflow as…
一些最常用的数据集如 MNIST.Fashion MNIST.cifar10/100 在 tf.keras.datasets 中就能找到,但对于其它也常用的数据集如 SVHN.Caltech101,tf.keras.datasets 中没有,此时我们可以在 TensorFlow Datasets 中找找看. tensorflow_datasets 里面包含的数据集列表:https://www.tensorflow.org/datasets/catalog/overview#all_dataset…
问题描述 tf.keras 在加载 cifar10 数据时报错,ssl.SSLError: [SSL: DECRYPTION_FAILED_OR_BAD_RECORD_MAC] decryption failed or bad record mac (_ssl.c:1977) import tensorflow as tf cifar10 = tf.keras.datasets.cifar10 (x_train, y_train), (x_test, y_test) = cifar10.load…
Update:2019/09/21 使用 tf.keras 时,请使用 tf.keras.optimizers 里面的优化器,不要使用 tf.train 里面的优化器,不然学习率衰减会出现问题. 使用 tf.keras 过程中,如果要使用 learning rate decay,不要使用 tf.train.AdamOptimizer() 等 tf.train 内的优化器,因为学习率的命名不同,导致 tf.keras 中学习率衰减的函数无法使用,一般都会报错 "AttributeError: 'T…
运行以下类似代码: while True: inputs, outputs = get_AlexNet() model = tf.keras.Model(inputs=inputs, outputs=outputs) model.summary() adam_opt = tf.keras.optimizers.Adam(learning_rate) # The compile step specifies the training configuration. model.compile(opt…
keras 构建模型很简单,上手很方便,同时又是 tensorflow 的高级 API,所以学学也挺好. 模型复现在我们的实验中也挺重要的,跑出了一个模型,虽然我们可以将模型的 checkpoint 保存,但再跑一遍,怎么都得不到相同的结果. 用 keras 实现模型,想要能够复现,首先需要设置各个可能的随机过程的 seed,如 np.random.seed(1).然后分为两种情况: 代码不要在 GPU 上跑,而是限制在 CPU 上跑,此时可以自行设置 fit 函数的 batch_size 参数…
import argparse import tensorflow as tf tf.enable_eager_execution() def main(args): """Download the Microsoft COCO 2014 data set.""" # Annotation zip tf.keras.utils.get_file(fname=args.annotation_zip, origin=args.annotation_o…
自定义tf.keras.Model需要注意的点 model.save() subclass Model 是不能直接save的,save成.h5,但是能够save_weights,或者save_format="tf" NotImplementedError: Saving the model to HDF5 format requires the model to be a Functional model or a Sequential model. It does not work…
论文 Decoupled Weight Decay Regularization 中提到,Adam 在使用时,L2 与 weight decay 并不等价,并提出了 AdamW,在神经网络需要正则项时,用 AdamW 替换 Adam+L2 会得到更好的性能. TensorFlow 2.0 在 tensorflow_addons 库里面实现了 AdamW,目前在 Mac 和 Linux 上可以直接 pip install tensorflow_addons,在 windows 上还不支持,但也可以…
系列文章目录: Tensorflow2.0 介绍 Tensorflow 常见基本概念 从1.x 到2.0 的变化 Tensorflow2.0 的架构 Tensorflow2.0 的安装(CPU和GPU) Tensorflow2.0 使用 "tf.data" API "tf.keras"API 使用GPU加速 安装配置GPU环境 使用Tensorflow-GPU 3 TensorFlow2.0使用 3.2 "tf.keras"API Keras是一…
代码和其他资料在 github 一.tf.keras概述 首先利用tf.keras实现一个简单的线性回归,如 \(f(x) = ax + b\),其中 \(x\) 代表学历,\(f(x)\) 代表收入,分别代表输入特征和输出值.为了描述预测目标与真实值之间的整体误差最小,需要定义一个损失函数,数学描述为\((f(x) - y)^2\),即预测值与真实值差值的平方的均值.优化的目标是求解参数 \(a,b\) 使其损失函数最小. import tensorflow as tf import pand…
# 1   sklearn  一般方法 网上有很多教程,不再赘述. 注意顺序是 numpy+mkl     ,然后 scipy的环境,scipy,然后 sklearn # 2 anoconda anaconda 原始的环境已经自带了sklearn,这里说一下新建环境(比如  创建了一个tensorflow的环境),activate tensorflow2.0,然后conda install sklearn 即可,会帮你把各种需要的库都安装. # keras keras 前置需要Theano  或…
经过网上查找,找到了问题所在:在使用keras编程模式是,中间插入了tf.reshape()方法便遇到此问题. 解决办法:对于遇到相同问题的任何人,可以使用keras的Lambda层来包装张量流操作,这是我所做的: embed1 = keras.layers.Embedding(, )(inputs) # embed = keras.layers.Reshape(-,, , )(embed1) # embed = tf.reshape(embed1, [-, , , ]) def reshape…
TensorFlow 2.0 for Linux 使用时报错:(cuDNN 版本低了) E tensorflow/stream_executor/cuda/cuda_dnn.cc:319] Loaded runtime CuDNN library: 7.4.1 but source was compiled with: 7.6.0. CuDNN library major and minor version needs to match or have higher minor version…
https://blog.csdn.net/ha010/article/details/103367311…
      …
在 subclassed_model.py 中,通过对 tf.keras.Model 进行子类化,设计了两个自定义模型. import tensorflow as tf tf.enable_eager_execution() # parameters UNITS = 8 class Encoder(tf.keras.Model): def __init__(self): super(Encoder, self).__init__() self.fc1 = tf.keras.layers.Dens…
经过一个月的准备,终于通过了TensorFlow的开发者认证,由于官方的中文文档较少,为了方便大家了解这个考试,同时分享自己的备考经验,让大家少踩坑,我整理并制作了这个中文手册,请大家多多指正,有任何问题和建议都可以在文末联系到我~ 同时,感谢各位大牛们期间对我的帮助和指导! ---------------------------------------------------------------------------------------------------------------…
TF Lite开发人员指南 目录: 1 选择一个模型 使用一个预训练模型 使用自己的数据集重新训练inception-V3,MovileNet 训练自己的模型 2 转换模型格式 转换tf.GraphDef 完整转换器参考 计算节点兼容性 Graph 可视化工具 3 在移动端app,使用TensorFlow Lite模型推理 android IOS Raspberry PI 使用一个TensorFlow Lite 模型在你的移动端app需要受到需要约束:首先,你必须有训练好的模型(预训练/自己训练…
一.  数据集的准备与预处理 1 . 收集dataset (大量用户名--包含正常用户名与非法用户名) 包含两个txt文件  legal_name.txt  ilegal_name.txt. 如下图所示 2. 用文件进行预处理 # Data sets import os import pandas as pd DATAPATH = "../dataset" POS = os.path.join(DATAPATH, "legal_name.txt") POS_OUTP…
keras训练了个二分类的模型.需求是把keras模型跑到 tensorflow serving上 (TensorFlow Serving 系统用于在生产环境中运行模型) keras模型转 tensorflow模型 我把 keras模型转tensorflow serving模型所使用的方法如下: 1.要拿到算法训练好的keras模型文件(一个HDF5文件) 该文件应该包含: 模型的结构,以便重构该模型 模型的权重 训练配置(损失函数,优化器等) 优化器的状态,以便于从上次训练中断的地方开始 2.…
TensorFlow 高级接口使用简介(estimator, keras, data, experiment) TensorFlow 1.4正式添加了keras和data作为其核心代码(从contrib中毕业),加上之前的estimator API,现在已经可以利用Tensorflow像keras一样方便的搭建网络进行训练.data可以方便从多种来源的数据输入到搭建的网络中(利用tf.features可以方便的对结构化的数据进行读取和处理,比如存在csv中的数据,具体操作可以参考这篇文档):ke…
Tensorflow 1.4中,Keras作为作为核心模块可以直接通过tf.keas进行调用,但是考虑到keras对tfrecords文件进行操作比较麻烦,而将keras模型转成tensorflow中的另一个高级API -- Estimator模型,然后就可以调用Dataset API进行对tfrecords进行操作用来训练/评估模型.而keras本身也用到了Estimator API并且提供了tf.keras.estimator.model_to_estimator函数将keras模型可以很方…
tensorflow TensorFlow is an open-source machine learning library for research and production. https://en.wikipedia.org/wiki/TensorFlow https://www.tensorflow.org/ Tutorial: https://www.tensorflow.org/tutorials/ Keras: Keras is a high-level API to bui…