题面 Bzoj 洛谷 题解 显然,如果让你查询整个数列的最大异或和,建一颗\(01Trie\),每给定一个\(p\),按照二进制后反方向跳就行了(比如当前二进制位为\(1\),则往\(0\)跳,反之亦反). 但是现在要支持在最末尾插入和区间查询,将这颗\(Trie\)可持久化一下就好了(可持久化\(Trie\)敲板) #include <cstdio> #include <cstring> #include <algorithm> using std::min; usi…
BZOJ_3689_异或之_可持久化Trie+堆 Description 给定n个非负整数A[1], A[2], ……, A[n]. 对于每对(i, j)满足1 <= i < j <= n,得到一个新的数A[i] xor A[j],这样共有n*(n-1)/2个新的数.求这些数(不包含A[i])中前k小的数. 注:xor对应于pascal中的“xor”,C++中的“^”. Input 第一行2个正整数 n,k,如题所述. 以下n行,每行一个非负整数表示A[i]. Output 共一行k个数…
BZOJ_3261_最大异或和_可持久化trie Description 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满足l<=p<=r,使得: a[p] xor a[p+1] xor ... xor a[N] xor x 最大,输出最大是多少. Input 第一行包含两个整数 N  ,M,含义如问题描述所示.   第二行包含 N个非负整数,表示初…
题目链接 维护整个数列的异或前缀和和\(s\),然后每次就是要求\(s[N]\text{^}x\text{^}s[k],l-1<=k<=r-1\)的最大值 如果没有\(l\)的限制,那么直接用可持久化\(Trie\)查询第\(r\)个版本跑最大异或和就行. \(Trie\)求最大异或值的方法就是把数看成二进制建树,一位位往下走能往相反的就往相反的走,不能就走相同的,走到底就是答案. 现在多了\(l\)的限制,所以需要记录每个节点在这个节点的子树中结尾的数的最大的编号是多少,记为\(latest…
题目链接:BZOJ - 4103 题目分析 THUSC滚粗之后一直没有写这道题,从来没写过可持久化Trie,发现其实和可持久化线段树都是一样的.嗯,有些东西就是明白得太晚. 首先Orz ZYF-ZYF 神犇的题解. 题目给出的 n 和 m 的范围差别很大,n 很小,m 很大,因此可以想到 n 的范围是为了直接暴力枚举. 题目要求的就是 A 的一段区间中的数和 B 的一段区间中的数的异或的第 k 大值. 位运算有关的题目,一般是从高位到低位贪心之类的. 区间异或,一般要使用可持久化 Trie. 我…
3261: 最大异或和 Time Limit: 10 Sec  Memory Limit: 512 MB Description       给定一个非负整数序列 {a},初始长度为 N.       有   M个操作,有以下两种操作类型: 1 .A x:添加操作,表示在序列末尾添加一个数 x,序列的长度 N+1.2 .Q l r x:询问操作,你需要找到一个位置 p,满足 l<=p<=r,使得: a[p] xor a[p+1] xor ... xor a[N] xor x 最大,输出最大是多…
4103: [Thu Summer Camp 2015]异或运算 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 474  Solved: 258 Description 给定长度为n的数列X={x1,x2,...,xn}和长度为m的数列Y={y1,y2,...,ym},令矩阵A中第i行第j列的值Aij=xi xor  yj,每次询问给定矩形区域i∈[u,d],j∈[l,r],找出第k大的Aij. Input 第一行包含两个正整数n,m,分别表示两…
题目链接 BZOJ4103 题解 一眼看过去是二维结构,实则未然需要树套树之类的数据结构 区域异或和,就一定是可持久化\(trie\)树 观察数据,\(m\)非常大,而\(n\)和\(p\)比较小,甚至可以每次询问都枚举\(x_i\) 所以我们可以考虑对\(y_i\)建\(trie\),每次询问取出对应区间的\(x_i\)在对应区间的\(trie\)树中跑 多点询问和单点询问时类似的,只不过它们会分开走 我们只需每次记录每个\(x_i\)所在的节点 对于每一层,统计一下能异或出多少\(1\),如…
点此看题面 大致题意: 求前\(k\)大的区间异或和之和. 可持久化\(Trie\)树 之前做过一些可持久化\(Trie\)树题,结果说到底还是主席树. 终于,碰到一道真·可持久化\(Trie\)树的题目. 其实它的实现与主席树也是类似的. 大致思路 首先,我们统计一遍前缀异或和. 然后,我们根据前缀异或和建一棵可持久化\(Trie\)树. 接下来最核心的来了: 我们先求出以每个点为右端点所能得到的最大异或和,这可以在\(Trie\)树上查询得到(和普通的\(Trie\)树是一样的). 然后,把…
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=61705397 Description 给定一个非负整数序列 {a},初始长度为 N. 有 M个操作,有以下两种操作类型: 1 .A x:添加操作,表示在序列末尾添加一个数 x,序列的长度 N+1. 2 .Q l r x:询问操作,你需要找到一个位置 p,满足 l<=p<=r,使得: a[p] xor a[p+1] xor - xor a[N]…
[BZOJ3689]异或之 Description 给定n个非负整数A[1], A[2], ……, A[n].对于每对(i, j)满足1 <= i < j <= n,得到一个新的数A[i] xor A[j],这样共有n*(n-1)/2个新的数.求这些数(不包含A[i])中前k小的数.注:xor对应于pascal中的“xor”,C++中的“^”. Input 第一行2个正整数 n,k,如题所述.以下n行,每行一个非负整数表示A[i]. Output 共一行k个数,表示前k小的数. Samp…
Description 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Q l r x:询问操作,你需要找到一个位置p,满足l<=p<=r,使得: a[p] xor a[p+1] xor ... xor a[N] xor x 最大,输出最大是多少. Input 第一行包含两个整数 N ,M,含义如问题描述所示. 第二行包含 N个非负整数,表示初始的序列 A . 接下来 M行,每行描述一个操作,…
因为在后面加数字又求后缀和太麻烦,所以xor[p...n]=xor[1...n]^xor[p-1...n]. 首先处理出来区间异或前缀和,对前缀和建trie树(在最前面放一棵0表示最开始的前缀和 然后就是可持久化trie的板子了 #include<iostream> #include<cstdio> #include<cstring> using namespace std; ; int n,m,a[N],b[N],rt[N],cnt; ]; struct qwe {…
内存限制:512 MiB 时间限制:1000 ms 题目描述 给定长度为n的数列X={x1,x2,...,xn}和长度为m的数列Y={y1,y2,...,ym},令矩阵A中第i行第j列的值Aij=xi xor yj,每次询问给定矩形区域i∈[u,d],j∈[l,r],找出第k大的Aij. 输入格式 第一行包含两个正整数n,m,分别表示两个数列的长度 第二行包含n个非负整数xi 第三行包含m个非负整数yj 第四行包含一个正整数p,表示询问次数 随后p行,每行均包含5个正整数,用来描述一次询问,每行…
题意: 思路:可持久化Trie板子题,支持序列插入和询问 #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned int uint; typedef unsigned long long ull; typedef long double ld; typedef pair<int,int> PII; typedef pair<ll,ll> Pll; typede…
题目 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满足l<=p<=r,使得: a[p] xor a[p+1] xor ... xor a[N] xor x 最大,输出最大是多少. 输入格式 第一行包含两个整数 N ,M,含义如问题描述所示. 第二行包含 N个非负整数,表示初始的序列 A . 接下来 M行,每行描述一个操作,格式如题面所述. 输出格式…
异或粽子 Description 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 n 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 1 到 n.第 i 种馅儿具有一个非负整数的属性值 ai.每种馅儿的数量都足够多,即小粽不 会因为缺少原料而做不出想要的粽子.小粽准备用这些馅儿来做出 k 个粽子. 小粽的做法是:选两个整数数 l, r,满足 1 ≤ l ≤ r ≤ n,将编号在[l, r] 范围内的所有 馅儿混合做成一个粽子,所得的粽子的美味度为这些粽子的…
题目链接 题解 看到异或和最大就应该想到01 trie树 我们记\(S_i\)为前i项的异或和 那么我们的目的是最大化\(S_n\)^\(x\)^\(S_{j-1}\) \((l <= j <= r)\) (注意是\(j-1\), 所以l和r都要减1) \(S_n\)^\(x\)已经固定, 那么我们可以把\(S_j\)放入trie树搞 那么怎么处理区间呢? 类似主席树 记录一下\([1-i]\)每个节点被多少个数经过 那么两棵trie树相减,就得到了 \([l-r]\)这段区间的信息 然后就是…
; len=; var x,y,z,n,m,tot,lx,i:longint; sum:..maxn] of longint; rt:..maxn] of longint; time,l,r:..maxn*len] of longint; ch:char; procedure insert(x:longint);inline; var p,i:longint; begin rt[lx]:=tot+; p:=rt[lx-]; do begin inc(tot); l[tot]:=l[p]; r[t…
和bzoj4504差不多,就是换了个数据结构 像超级钢琴一样把五元组放进大根堆,每次取一个出来拆开,(d,l,r,p,v)表示右端点为d,左端点区间为(l,r),最大区间和值为v左端点在p上 关于怎么快速求区间和,用一个可持久trie上维护最大xor值和对应的点即可 #include<iostream> #include<cstdio> #include<queue> //#include<ctime> using namespace std; const…
如果你了解过 01 Trie 和 可持久化线段树(例如 : 主席树 ).那么就比较好去可持久化 Trie 可持久化 Trie 当 01 Trie 用的时候能很方便解决一些原本 01 Trie 不能解决的一些问题 01 Trie 的经典贪心算法可以在一个数集里面找出某个数和 X 异或的最值 但若数集不固定.变成了每次问询一段区间或者树上路径此时 01 Trie 便无法快速解决 这个时候需要使用可持久化的 Trie 来维护和进行查询操作.例如用前缀和建 Trie 就能方便查询某一区间的状况 可持久化…
做前缀异或和,用堆维护一个五元组(x,l,r,p,v),x为区间右端点的值,l~r为区间左端点的范围,p为x在l~r中最大异或和的位置,v为该最大异或和,每次从堆中取出v最大的元素,以p为界将其切成两部分重新扔进堆即可.查询一个值在一个区间中的最大异或和用可持久化trie实现.luogu上T掉了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<…
4103: [Thu Summer Camp 2015]异或运算 Time Limit: 20 Sec  Memory Limit: 512 MB Description 给定长度为n的数列X={x1,x2,...,xn}和长度为m的数列Y={y1,y2,...,ym},令矩阵A中第i行第j列的值Aij=xi xor  yj,每次询问给定矩形区域i∈[u,d],j∈[l,r],找出第k大的Aij. Input 第一行包含两个正整数n,m,分别表示两个数列的长度 第二行包含n个非负整数xi 第三行…
题目链接 [BZOJ传送门] [洛谷传送门] 题解 终于学会了可持久化trie树了.感觉并不是特别的难. 因为可持久化,那么我们就考虑动态开点的trie树. 都知道异或操作是有传递性的,那么我们就维护一个前缀异或和. [最长异或距离] 可以参考以上这一道题目的贪心策略. 每次找到另外一边的(说的清楚一点就是每一次找字典树的儿子都找异或的数当前这一位的异或1的值),这样可以保证疑惑后答案最大. 参照主席树的区间最小的求法:[洛谷的模板] 每一次我们就查找root[l - 1] ~ root[r]区…
P4735 最大异或和 题目描述 给定一个非负整数序列\(\{a\}\),初始长度为\(N\). 有\(M\)个操作,有以下两种操作类型: A x:添加操作,表示在序列末尾添加一个数\(x\),序列的长度\(N+1\). Q l r x:询问操作,你需要找到一个位置\(p\),满足\(l \le p \le r\),使得: \(a[p] \oplus a[p+1] \oplus \cdots \oplus a[N] \oplus x\)最大,输出最大是多少. 输入输出格式 输入格式: 第一行包含…
搞成前缀和然后就可以很方便地用可持久化trie维护了.时间复杂度O((N+M)*25) ------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> #include<cctype>   using namespace std;   #define b(x) (1…
前置芝士:可持久化Trie & 堆 类似于超级钢琴,我们用堆维护一个四元组\((st, l, r, pos)\)表示以\(st\)为起点,终点在\([l, r]\)内,里面的最大值的位置为\(pos\) 我们维护一个小根堆(堆顶最大),权值为st-pos的异或和,每一次找出最大的并删掉 所谓删,就是把一个区间从pos处分裂 即:\((st, l, r)->(st, l, pos - 1) (st, pos + 1, r)\) 这样重新维护pos值即可 维护pos值时,我们需要维护区间内与x的…
题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出与他异或起来最大的左端点并将这组信息用结构体存起来插入堆中. 那么最大值就是堆顶那组(假设右端点为$r$),但考虑到次大值可能出自同一个右端点,所以在弹出堆顶后还需要将以$r$为右端点的次大值插入堆中. 那么如何求出以$r$为右端点的最大值和次大值? 我们对序列每个数为一个版本建可持久化$trie$…
LOJ 洛谷 考场上都拍上了,8:50才发现我读错了题=-= 两天都读错题...醉惹... \(Solution1\) 先求一遍前缀异或和. 假设左端点是\(i\),那么我们要在\([i,n]\)中找一个\(sum_j\)使得它和\(sum_{i-1}\)异或最大.可以可持久化Trie. 对\(i\in[1,n]\)都求一遍它能得到的最大的异或值,扔到堆里. 每次从堆里找出值最大的,假设是\(x\),与\(sum_{x-1}\)异或得到最大值的数是\(sum_y\),那么之后就不能选\(sum_…
嘟嘟嘟 省选竟然考了一个可持久化trie,就挑着我不会的考. 话说考场上我确实写了一个trie的做法,只不过一直没调出来然后就只剩暴力分了. 现在想想实在是太蠢了,明明对算法没有把握,却头脑一热在这题上刚了两个点,为什么就不先把第二题的暴力写写呢---------- 学过主席树,就觉得可持久化trie好像没什么了.大体思路和主席树一样,没有修改的结点直接继承老的结点,修改的就新开结点.所以空间复杂度还是\(O(nlogn)\)的. 对于这一题,我们先求出前缀异或和,然后令\(t = sum[N]…