2597: [Wc2007]剪刀石头布 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1016  Solved: 477[Submit][Status][Discuss] Description 在一些一对一游戏的比赛(如下棋.乒乓球和羽毛球的单打)中,我们经常会遇到A胜过B,B胜过C而C又胜过A的有趣情况,不妨形象的称之为剪刀石头布情况.有的时候,无聊的人们会津津乐道于统计有多少这样的剪刀石头布情况发生,即有…
传送门 不得不说这思路真是太妙了 考虑能构成三元组很难,那我们考虑不能构成三元组的情况是怎么样 就是说一个三元组$(a,b,c)$,其中$a$赢两场,$b$赢一场,$c$没有赢 所以如果第$i$个人赢了$w_i$场,那么总共的不能构成的三元组就是$\sum_i{w_i*(w_i-1)}{2}$ 最大化满足的数量,就是最小化不满足的数量,就是最小化上面那个式子 那么我们考虑构建网络流 建源汇 对第$i$个人,从它向汇点连容量为$n$的边 对于每一对$i,j$之间的比赛建一个点$C_{i,j}$,如…
[Wc2007]剪刀石头布 题目大意:https://www.lydsy.com/JudgeOnline/problem.php?id=2597 题解: 发现直接求三元环不好求,我们考虑任选三个点不是三元环的个数. 这样的话,必定是有一个点被其余两个点指,我们就根据这个来求. 又发现,最后的答案之和所有点的度数有关. 就是,$\sum C_{d_i}^{2}$. 紧接着,因为度数和是一定的.而且已经有了一些边. 现在就是有固定的度数可以分配,每个点有一个分配上限,怎么分配最少? 发现一个事,就是…
考虑使非剪刀石头布情况尽量少.设第i个人赢了xi场,那么以i作为赢家的非剪刀石头布情况就为xi(xi-1)/2种.那么使Σxi(xi-1)/2尽量小即可. 考虑网络流.将比赛建成一排点,人建成一排点,每场未确定比赛向比赛双方连边,确定比赛向赢者连边,这样就是一种合法的比赛方案了. 在此基础上控制代价最小.由于每多赢一场非剪刀石头布情况的增量就更大,将边拆开费用设为增量即可. #include<iostream> #include<cstdio> #include<cmath&…
题目链接 BZOJ2597 题解 orz思维差 既然是一张竞赛图,我们选出任意三个点都可能成环 总方案数为 \[{n \choose 3}\] 如果三个点不成环,会发现它们的度数是确定的,入度分别为\(2,1,0\),出度为\(0,1,2\) 所以一个点的任意两个入度,都会对答案产生一个负的贡献 所以三元环数量为 \[{n \choose 3} - \sum\limits_{i = 1}^{n} {inde[i] \choose 2}\] 我们要最大化三元环数目,就要最小化\(\sum\limi…
题目大概是说n个人两两进行比赛,问如何安排几场比赛的输赢使得A胜B,B胜C,C胜A这种剪刀石头布的三元组最多. 这题好神. 首先,三元组总共有$C_n^3$个 然后考虑最小化不满足剪刀石头布条件的三元组个数,而要求的结果就是总数-这个不满足的个数了: 对于三个人构不成剪刀石头布现象,当且仅当,其中一个人赢了其他两个人 而由于这是完全图,如果一个人赢了$x_i$场那么包含这个人且这个人赢的次数最多的不满足剪刀石头布现象的三元组就有$C_{x_i}^2$个 所以目的就是最小化$\sum C_{x_i…
最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #include <cstring> #include <algorithm> #include <functional> #include <queue> using namespace std; ; const int inf = 0x33333333; typede…
其实本来打算做最小费用最大流的题目前先来点模板题的,,,结果看到这道题二话不说(之前打太多了)敲了一个dinic,快写完了发现不对 我当时就这表情→   =_=你TM逗我 刚要删突然感觉dinic的模板中的bfs就相当于找每天边的权都为1的图上的最短路,稍稍改一下就能变成spfa,于是重新写了一下,但是函数名还是bfs... 然后又发现不对,最后要返回路径的,dfs也要改= =结果变成了非递归,但是函数名还是dfs... 于是一个看似是dinic,实则垃圾得不行的最小费用最大流就敲完了 然后调了…
将每个点拆分成原点A与伪点B,A->B有两条单向路(邻接表实现时需要建立一条反向的空边,并保证环路费用和为0),一条残留容量为1,费用为本身的负值(便于计算最短路),另一条残留容量+∞,费用为0(保证可以多次通过该点,但费用只计算一次). 另外伪点B与原点右侧与下方的点有一条单向路(邻接表实现需要建立反向空边),残留容量为+∞,费用为0.源点0到点1有一条单向路,残留容量为K(可以通过K次),最后一个点的伪点2*n*n与汇点2*n*n+1有一条单向边,残留容量为K,两条边的费用都为0. 构图成功…
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, Northeastern University is the same. Enter from the north gate of Northeastern University,You are facing the main building of Northeastern University.…