摘要:为了更深入理解千亿参数的盘古大模型,华为云社区采访到了华为云EI盘古团队高级研究员谢凌曦.谢博士以非常通俗的方式为我们娓娓道来了盘古大模型研发的"前世今生",以及它背后的艰难往事. 本文分享自华为云社区<华为高级研究员谢凌曦:下一代AI将走向何方?盘古大模型探路之旅>,原文作者: 华为云社区精选 . "每个人都生活在特定的时代,每个人在特定时代中的人生道路各不相同.在同一个时代,有人慨叹生不逢时,有人只愿安分--"这是2021年北京高考命题作文&q…
deeplearning模型量化实战 MegEngine 提供从训练到部署完整的量化支持,包括量化感知训练以及训练后量化,凭借"训练推理一体"的特性,MegEngine更能保证量化之后的模型与部署之后的效果一致.本文将简要介绍神经网络量化的原理,并与大家分享MegEngine量化方面的设计思路与实操教程. 背景 近年来随着边缘计算和物联网的兴起与发展,许多移动终端(比如手机)成为了深度学习应用的承载平台,甚至出现了各式各样专用的神经网络计算芯片.由于这些设备往往对计算资源和能耗有较大限…
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍 1. 概述 近日来,ChatGPT及类似模型引发了人工智能(AI)领域的一场风潮. 这场风潮对数字世界产生了革命性影响.ChatGPT类模型具有惊人的泛用性,能够执行归纳.编程.翻译等任务,其结果与人类专家相当甚至更优.为了使ChatGPT等模型的训练和部署更轻松,AI 开源社区进行了各种尝试(例如 ChatLLaMa.Alpaca.Vicuna.Databricks-Dolly等). 然而,尽管…
武汉附近的同学们有福了,这是全球第一次关于Autodesk viewer的教室培训. :) 你可能已经在各种场合听过或看过Autodesk最新推出的大模型浏览器,这是无需插件的浏览器模型,支持几十种数据格式.目前该产品还没有正式发布,但如果你感兴趣,座位紧张,赶紧报名:   http://www.autodesk.com.cn/adsk/servlet/item?siteID=1170359&id=23581540  (这是系列培训中的一部分)   通用无插件大模型浏览器–Autodesk Vi…
引自:http://blog.csdn.net/sinat_26917383/article/details/72857454 中文文档:http://keras-cn.readthedocs.io/en/latest/ 官方文档:https://keras.io/ 文档主要是以keras2.0. . Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Sequent…
模型量化 什么是量化 模型的weights数据一般是float32的,量化即将他们转换为int8的.当然其实量化有很多种,主流是int8/fp16量化,其他的还有比如 二进制神经网络:在运行时具有二进制权重和激活的神经网络,以及在训练时计算参数的梯度. 三元权重网络:权重约束为+1,0和-1的神经网络 XNOR网络:过滤器和卷积层的输入是二进制的. XNOR 网络主要使用二进制运算来近似卷积. 现在很多框架或者工具比如nvidia的TensorRT,xilinx的DNNDK,TensorFlow…
1,概述 模型量化应该是现在最容易实现的模型压缩技术,而且也基本上是在移动端部署的模型的毕竟之路.模型量化基本可以分为两种:post training quantizated和quantization aware training.在pyrotch和tensroflow中都提供了相应的实现接口. 对于量化用现在常见的min-max方式可以用公式概括为: $r = S (q - Z)$ 上面式子中q为量化后的值,r为原始浮点值,S为浮点类型的缩放系数,Z为和q相同类型的表示r中0点的值.根据: $…
本文基本参考自这篇文章:8-Bit Quantization and TensorFlow Lite: Speeding up mobile inference with low precision 首先来一段keras dalao Francois Chollet的鸡汤: make it possible make it work make it efficient make it dependable and invisible move on to next layer and think…
计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践 2018年06月13日 16:38:11 轻春 阅读数 6004更多 分类专栏: 机器学习 机器学习荐货情报局   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u010352603/article/details/80681100 计算广告CTR预估系列(七)–Facebook经典模型LR+GBDT理论与…
在深度学习中,量化指的是使用更少的bit来存储原本以浮点数存储的tensor,以及使用更少的bit来完成原本以浮点数完成的计算.这么做的好处主要有如下几点: 更少的模型体积,接近4倍的减少: 可以更快的计算,由于更少的内存访问和更快的int8计算,可以快2~4倍. 一个量化后的模型,其部分或者全部的tensor操作会使用int类型来计算,而不是使用量化之前的float类型.当然,量化还需要底层硬件支持,x86 CPU(支持AVX2).ARM CPU.Google TPU.Nvidia Volta…