https://www.lydsy.com/JudgeOnline/problem.php?id=3196 https://www.luogu.org/problemnew/show/P3380 (题面用洛谷的) 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 查询k在区间内的排名 查询区间内排名为k的值 修改某一位值上的数值 查询k在区间内的前驱(前驱定义为严格小于x,且最大的数,若不存在输出-2147483647) 查询k在区间内的后继(后继定义为严格大于…
传送门 思路 按照套路,直接上后缀自动机. 部分分:\(l=1,r=|S|\) 首先把\(S\)和\(T\)的后缀自动机都建出来. 考虑枚举\(T\)中的右端点\(r\),查询以\(r\)结尾的串最长可以往左延伸多长,使得它仍然是\(S\)的子串.记该长度为\(lim_r\). \(lim_r\)可以在\(SAM_S\)中瞎跳跳出来. 那么答案即为 \[ \sum_{i=2}^{cnt} \max(0,len_i-\max(len_{fa_i},lim_{pos_i})) \] 其中\(i\)是…
题面 传送门 题解 李超线段树板子 具体可以看这里 //minamoto #include<bits/stdc++.h> #define R register #define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i) #define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i) #define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v…
题面 传送门 题解 字符串就硬是要和数据结构结合在一起么--\(loj\)上\(rk1\)好像码了\(10k\)的样子-- 我们设\(L=r-l+1\) 首先可以发现对于\(T\)串一定是从左到右,能取就取是最优的 我们先用后缀自动机\(+\)线段树合并求出自动机上每一个节点的\(endpos\)集合.如果\(L\)较大的时候,我们考虑二分找到第一个端点,再找下一个--这样在线段树上找的总次数是\({n\over L}\),复杂度为\(O({n\over L}\log n)\) 但是\(L\)较…
题目链接 这题我很久之前用分块写过,没写出来.. 今天又看到了,于是下决心把这题做出来. 这次我用线段树写的,直接对每本书的编号Hash一下然后离散化然后各建一棵线段树,维护当前编号在某个位置有没有书,就行了. 为了卡空间,我用了\(vector\),同时指针建树,结构体里不保存当前节点维护的区间,区间作为参数递归,这样就能过了,空间复杂度应该是\(O(N+M\ log\ N)\). 另外Hash的边界搞大一点,第一次只弄了10W 80分,改成100W就A了. #include <iostrea…
原来线段树还有这种操作(开成一个桶) 用区间维护在这个区间内元素的个数,离散化一下,居然能达到splay的效果 不仅码量大大减少,而且跑的飞快!!! 6种操作  200多ms 插入 xx 数 删除 xx 数(若有多个相同的数,因只删除一个) 查询 xx 数的排名(排名定义为比当前数小的数的个数 +1+1 .若有多个相同的数,因输出最小的排名) 查询排名为 xx 的数 求 xx 的前驱(前驱定义为小于 xx ,且最大的数) 求 xx 的后继(后继定义为大于 xx ,且最小的数) #include<…
传送门 我有种自己根本没学过SAM的感觉……最后还是抄了老半天的题解…… 首先,对$S$和每一次的$T$都建一个SAM 先考虑一下$l=1,r=\left| S \right|$的情况 设$lim_i$表示字符串$T[1..i]$能在$S$中匹配到的最长后缀(即$T[i-lim_i+1,i]$是$S$的子串且$lim_i$最大)(有可能不存在这个字符那么$lim_i=0$) 这个$lim_i$可以不断地在$S$的后缀自动机上跳来求出.当无法向下匹配时,一直跳parent树直到可以匹配为止 我们假…
题目 [题目背景] Osu听过没?那是Konano最喜欢的一款音乐游戏,而他的梦想就是有一天自己也能做个独特酷炫的音乐游戏.现在 ,他在世界知名游戏公司KONMAI内工作,离他的梦想也越来越近了.这款音乐游戏内一般都包含了许多歌曲,歌曲 越多,玩家越不易玩腻.同时,为了使玩家在游戏上氪更多的金钱花更多的时间,游戏一开始一般都不会将所有曲 目公开,有些曲目你需要通关某首特定歌曲才会解锁,而且越晚解锁的曲目难度越高. [题目描述] 这一天,Konano接到了一个任务,他需要给正在制作中的游戏<III…
题面传送门 我!竟!然!独!立!A!C!了!这!道!题!incredible! 首先看到这类最大化某个分式的题目,可以套路地想到分数规划,考虑二分答案 \(mid\) 并检验是否存在合法的 \(S\) 使得 \(\dfrac{\sum\limits_{e\in S}v(e)}{|S|}\ge mid\),将分母乘过去并稍微变个形可得 \(\sum\limits_{e\in S}v(e)-mid\ge 0\),也就是说我们将每条边边权都减去 \(mid\) 并检验包含 \([L,R]\) 条边的路…
题目链接 题意:给出一棵树,有边权,\(m\) 次询问,每次给出三个数 \(p,l,r\),求边集 \(\bigcap\limits_{i=l}^rE(p,i)\) 中所有边的权值和. 其中 \(E(u,v)\) 为点 \(u\) 到点 \(v\) 的路径中经过的边的集合. 强制在线. \(1 \leq n \leq 2 \times 10^5\). 果然是神仙 ix35 wdl 出的题啊-- 不妨以 \(1\) 为根,做一遍 dfs 求出它们的 dfs 序,以及它们到根的距离 \(d_i\).…