NumPyArray】的更多相关文章

转自:https://www.jianshu.com/p/f2bd63766204 it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite']) 查了查np.nditer原来是numpy array自带的迭代器.这里简单写个demo解释一下np.nditer的用法. 先构建一个3x4的矩阵 然后输入命令 flags=['multi_index']表示对a进行多重索引,具体解释看下面的代码. op_flags=['readwrit…
import arcpy import numpy # Create a simple array from scratch using random values myArray = numpy.random.random_integers(0,100,2500) myArray.shape = (50,50) # Convert array to a geodatabase raster myRaster = arcpy.NumPyArrayToRaster(myArray,x_cell_s…
DataFrame.as_matrix(columns=None)¶ Convert the frame to its Numpy-array representation.…
代码示例来自https://github.com/aymericdamien/TensorFlow-Examples tensorflow先定义运算图,在run的时候才会进行真正的运算. run之前需要先建立一个session 常量用constant 如a = tf.constant(2) 变量用placeholder 需要指定类型 如a = tf.placeholder(tf.int16) 矩阵相乘 matrix1 = tf.constant([[3., 3.]]) #1*2矩阵 matrix…
Neural Machine Translation Welcome to your first programming assignment for this week! You will build a Neural Machine Translation (NMT) model to translate human readable dates ("25th of June, 2009") into machine readable dates ("2009-06-25…
Operations on word vectors Welcome to your first assignment of this week! Because word embeddings are very computionally expensive to train, most ML practitioners will load a pre-trained set of embeddings. After this assignment you will be able to: L…
tensorflow急切执行概述 Eager execution is an imperative, define-by-run interface where operations are executed immediately as they are called from Python. This makes it easier to get started with TensorFlow, and can make research and development more intui…
rnn.utils.py import numpy as np def softmax(x): e_x = np.exp(x - np.max(x)) return e_x / e_x.sum(axis=0) def sigmoid(x): return 1 / (1 + np.exp(-x)) 引入所需的包 import numpy as np from rnn_utils import * 1 - 基础循环神经网络的前向传播 下面是如何实现一个RNN: Steps: 实现单步RNN所需的计算…
Improvise a Jazz Solo with an LSTM Network Welcome to your final programming assignment of this week! In this notebook, you will implement a model that uses an LSTM to generate music. You will even be able to listen to your own music at the end of th…
Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In this assignment, you will implement your first Recurrent Neural Network in numpy. Recurrent Neural Networks (RNN) are very effective for Natural Language…
Autonomous driving - Car detection Welcome to your week 3 programming assignment. You will learn about object detection using the very powerful YOLO model. Many of the ideas in this notebook are described in the two YOLO papers: Redmon et al., 2016 (…
Planar data classification with one hidden layer 你会学习到如何: 用单隐层实现一个二分类神经网络 使用一个非线性激励函数,如 tanh 计算交叉熵的损失值 实现前向传播和后向传播 1 - Packages(导入包) 需要导入的包: numpy:Python中的常用的科学计算库 sklearn:提供简单而高效的数据挖掘和数据分析工具 matplotlib:Python中绘图库 testCases: 提供了一些测试例子来评估函数的正确性 planar…
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by Step Convolutional Neural Networks: Application Residual Networks Autonomous driving - Car detection YOLO Face Recognition for the Happy House Art: N…
pandas 最常用的三种基本数据结构: 1.dataFrame: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html  DataFrame相当于有表格(eg excel),有行表头和列表头 1.1初始化: a=pd.DataFrame(np.random.rand(,),index=list("ABCD"),columns=list('abcde')) 1.2 a['f']=[1,2…
Planar data classification with a hidden layer Welcome to the second programming exercise of the deep learning specialization. In this notebook you will generate red and blue points to form a flower. You will then fit a neural network to correctly cl…
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exercise of the deep learning specialization. In this notebook you will build your first image recognition algorithm. You will build a cat classifier that r…
一.前言 本次分析的源码为大佬复现的keras版本,上一波地址:https://github.com/qqwweee/keras-yolo3 初步打算重点分析两部分,第一部分为数据,即分析图像如何做等比变化,如何将标注框(groud truth boxs) 的信息转换为计算损失时使用的label.另一部分为损失函数计算的源码.个人认为这两部分比较难理解,所以想把自己的理解写出来,以便大家一起交流.作为菜鸟中的菜菜鸟可能理解有不到位的地方,希望大家批评指正. 二.数据处理关键代码位置及功能简介 在…
一.NumPy简介 NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. 1.NumPy的主要功能 (1)ndarray:一个多维数组结构,高效且节省空间. (2)无需循环对整组数据进行快速运算的数学函数. (3)线性代数.随机数生成和傅里叶变换功能. 2.安装和引用 pip install numpy # 安装方法 import numpy as np # 引用方法 3.为什么要使用NumPy? (1)例:已知若干家跨国公司的市值(美元),将其换算为人民币 im…
NumPy简介: NumPy 是高性能科学计算和数据分析的基础包:它是pandas等其他工具的基础. NumPy的主要功能: 1. ndarray,一个多维数组结构,高效且节省空间 (最主要的功能) 2. 无需循环对整组数据进行快速运算的数学函数 3. 线性代数.随机数生成和傅里叶变换功能 安装方法: pip install numpy 引用方式: import numpy as np ndarray --- 多维数组对象 import numpy as np 创建 ndarray: np.ar…
Numpy学习笔记 之前没有花时间去专门学Numpy,都是用到什么就草草查一下,最近在学DeepLearning,就决定还是系统地把Numpy学一遍. 一.Numpy基础篇 https://www.runoob.com/numpy/numpy-tutorial.html 大部分跟着菜鸟教程这个网站学的,上面有的基础知识点就不赘述了,只写一些值得特别注意的or没见过用法or自己的理解. 1.dtype(数据类型对象) dt = np.dtype(np.int32) #或np.dtype("i4&q…
Neural Machine Translation Welcome to your first programming assignment for this week! You will build a Neural Machine Translation (NMT) model to translate human readable dates ("25th of June, 2009") into machine readable dates ("2009-06-25…
Operations on word vectors Welcome to your first assignment of this week! Because word embeddings are very computionally expensive to train, most ML practitioners will load a pre-trained set of embeddings. After this assignment you will be able to: L…
Improvise a Jazz Solo with an LSTM Network Welcome to your final programming assignment of this week! In this notebook, you will implement a model that uses an LSTM to generate music. You will even be able to listen to your own music at the end of th…
Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In this assignment, you will implement your first Recurrent Neural Network in numpy. Recurrent Neural Networks (RNN) are very effective for Natural Language…
题目 在这部分的练习中,你将建立一个逻辑回归模型来预测一个学生是否能进入大学.假设你是一所大学的行政管理人员,你想根据两门考试的结果,来决定每个申请人是否被录取.你有以前申请人的历史数据,可以将其用作逻辑回归训练集.对于每一个训练样本,你有申请人两次测评的分数以及录取的结果.为了完成这个预测任务,我们准备构建一个可以基于两次测试评分来评估录取可能性的分类模型. 编程实现 1.Visualizing the data 在开始实现任何学习算法之前,如果可能的话,最好将数据可视化. import nu…
概述 Attention Model 的出现,在sequence model的领域中算是一个跨时代的事件.在Many-to-Many的sequence model中,在decoder network中的每一个time step的输出应该跟encoder network中的不同的time step的值的联系度是不一样的:举个例子,如果咱们将一段中文翻译成英文,如果用传统的Many-to-Many的结构的sequence model来做的话,如果是句子的长度不长的话,咱们的结果准确度也不会很差,但是…
目录 Improvise a Jazz Solo with an LSTM Network Packages 1 - Problem Statement 1.1 - Dataset What are musical "values"? (optional) Music as a sequence of values 1.2 - Model Overview Overview of Section 2 and 3 Sequence generation uses a for-loop S…
一步步搭建循环神经网络 将在numpy中实现一个循环神经网络 Recurrent Neural Networks (RNN) are very effective for Natural Language Processing and other sequence tasks because they have "memory". 他们可以读取一个输入 \(x^{\langle t \rangle}\) (such as words) one at a time, 并且通过隐藏层激活…
Improvise a Jazz Solo with an LSTM Network 实现使用LSTM生成音乐的模型,你可以在结束时听你自己的音乐,接下来你将会学习到: 使用LSTM生成音乐 使用深度学习生成你自己的爵士乐 现在加载库,其中,music21可能不在你的环境内,你需要在命令行中执行pip install msgpack以及pip install music21来获取. from __future__ import print_function import IPython impo…
1. 词向量上的操作(Operations on word vectors) 因为词嵌入的训练是非常耗资源的,所以ML从业者通常 都是 选择加载训练好 的 词嵌入(Embedding)数据集.(不用自己训练啦~~~) 任务: 导入 预训练词向量,使用余弦相似性(cosine similarity)计算相似度 使用词嵌入来解决 "Man is to Woman as King is to __." 之类的 词语类比问题 修改词嵌入 来减少它们的性别歧视 import numpy as n…