如何绘制caffe网络训练曲线】的更多相关文章

本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51774966 当我们设计好网络结构后,在神经网络训练的过程中,迭代输出的log信息中,一般包括,迭代次数,训练损失代价,测试损失代价,测试精度等.本文提供一段示例,简单讲述如何绘制训练曲线(training curve). 首先看一段训练的log输出,网络结构参数的那段忽略,直接跳到训练迭代阶段: I0627 21:30:06.0043…
使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupyter notebook,spyder等工具来运行python代码,这样才和它的可视化完美结合起来. 因为我是用anaconda来安装一系列python第三方库的,所以我使用的是spyder,与matlab界面类似的一款编辑器,在运行过程中,可以查看各变量的值,便于理解,如下图: 只要安装了anac…
Caffe---Pycaffe 绘制loss和accuracy曲线 <Caffe自带工具包---绘制loss和accuracy曲线>:可以看出使用caffe自带的工具包绘制loss曲线和accuracy曲线十分的方便简单,而这种方法看起来貌似只能分开绘制曲线,无法将两种曲线绘制在一张图上.但,我们有时为了更加直观的观察训练loss和测试loss,往往需要将这两种曲线绘制在一张图上.那如何解决呢?python接口,Pycaffe可以实现将这两种曲线绘制在一张图上. 目前,我知道的知识面中,Pyc…
Caffe自带工具包---绘制loss和accuracy曲线 为什么要绘制loss和accuracy曲线?在训练过程中画出accuracy 和loss曲线能够更直观的观察网络训练的状态,以便更好的优化网络的训练.本文主要介绍在基于caffe框架训练网络时,利用caffe自带的工具包来绘制曲线.caffe中自带小工具: caffe-master/tools/extra/parse_log.sh, caffe-master/tools/extra/extract_seconds.py和 caffe-…
该工作的主要目的是为了练习运用pycaffe来进行神经网络一站式训练,并从多个角度来分析对应的结果. 目标: python的运用训练 pycaffe的接口熟悉 卷积网络(CNN)和全连接网络(DNN)的效果差异性 学会从多个角度来分析分类结果 哪些图片被分类错误并进行可视化? 为什么被分错? 每一类是否同等机会被分错? 在迭代过程中,每一类的错误几率如何变化? 是否开始被正确识别后来又被错误识别了? 测试数据集:mnist 代码:https://github.com/TiBAiL/Pycaffe…
论文:<Fully Convolutional Networks for Semantic Segmentation> 代码:FCN的Caffe 实现 数据集:PascalVOC 一 数据集制作 PascalVOC数据下载下来后,制作用以图像分割的图像数据集和标签数据集,LMDB或者LEVELDB格式. 最好resize一下(填充的方式). 1. 数据文件夹构成 包括原始图片和标签图片,如下.   然后,构建对应的lmdb文件.可以将所有图片按照4:1的比例分为train:val的比例.每个t…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(一).MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(二)中,采用全连接神经网络(784-300-10),分别用非深度学习框架和基于pytorch实现,训练结果相当. 这里采用卷积神经网络(CNN)中著名的LeNet-5网…
Windows平台上Caffe的训练与学习方法(以数据库CIFAR-10为例) 在完成winodws平台上的caffe环境的搭建之后,亟待掌握的就是如何在caffe中进行训练与学习,下面将进行简单的介绍. 1.数据库CIFAR-10的下载与介绍 CIFAR-10数据库的下载地址:http://www.cs.toronto.edu/~kriz/cifar.html CIFAR-10数据库: 60000张32*32大小的彩色图像共计10类(airplane.automobile. bird.cat…
caffe-master/python/draw_net.py 实现绘制caffe中定义的网络模型功能,将.prototxt文件可视化. 需要先安装pydot和protobuf工具 通过Anaconda安装pydot和protobuf工具: sduo chmod 777 -R ~/anaconda2 conda install protobuf conda install pydot 如果还缺少其他工具,也可以通过这种方式安装. 绘制Lenet网络模型 MNIST手写体网络模型Lenet: cd…
Couldn't import dot_parser, loading of dot files will not be possible的问题 1 .sudo pip uninstall pyparsing 2. sudo pip install -Iv https://pypi.python.org/packages/source/p/pyparsing/pyparsing-1.5.7.tar.gz#md5=9be0fcdcc595199c646ab317c1d9a709 writing d…
继续python接口的学习.剩下还有solver.deploy文件的生成和模型的測试. 网络训练 solver文件生成 事实上我认为用python生成solver并不如直接写个配置文件,它不像net配置一样有非常多反复的东西. 对于一下的solver配置文件: base_lr: 0.001 display: 782 gamma: 0.1 lr_policy: "step" max_iter: 78200 #训练样本迭代次数=max_iter/782(训练完一次所有样本的迭代数) mom…
Wide & Deep的OneFlow网络训练 HugeCTR是英伟达提供的一种高效的GPU框架,专为点击率(CTR)估计训练而设计. OneFlow对标HugeCTR搭建了Wide & Deep 学习网络(WDL).OneFlow-WDL网络实现了模型并行与稀疏更新,在8卡12G TitanV的服务器上实现支持超过4亿的词表大小,而且性能没有损失与小词表性能相当. 本文介绍如何使用OneFlow-WDL网络进行训练,以及一些训练结果及分析. 环境和准备 运行OneFlow-WDL需要有安…
canvas中绘制二次贝塞尔曲线的方法为ctx.quadraticCurveTo(x1,y1,x2,y2); 四个参数分别为两个控制点的坐标.开始点即当前canvas中目前的点,如果想从指定的点开始,需要使用ctx.moveTo(x,y)方法 演示效果如下图 上代码: html <!doctype html> <html> <head> <meta charset="utf-8"> <title>无标题文档</title…
同学们大家好,欢迎收看由老王测量上班记出品的cass9.1视频课程 我是本节课主讲老师九天. 我们讲课的教程附件也是共享的,请注意索取测量空间中. [点击索取cass教程]5元立得 (给客服说暗号:“老王测量上班记”) 即可5元获得教程全系列,不带软件安装 这节课我们学习第7节绘制与标注圆曲线和细部点的方法. 课程教案 使用cass9.1绘制与标注圆曲线和细部点的方法,先画中线. 圆曲线 第一种使用圆命令和修剪命令 第二种使用倒圆角命令 这里我们讲一讲CAD里面直接标注,和效仿实际使用仪器测设来…
由于安装新版本的TensorFlow需要cudnn6.0因此用6.0将原来的 5.0替换了,后来又用之前编译好的caffe进行训练,发现caffe会去找5.0的cudnn,然后就报错了,不能正常训练. 开始的时候试着建立一个软连接,没有成功,后来将caffe重新make了一下,又运行发现还是不能跑,然后又运行了一下make install就可以正常运行了.…
用Pytorch1.0进行半精度浮点型网络训练需要注意下问题: 1.网络要在GPU上跑,模型和输入样本数据都要cuda().half() 2.模型参数转换为half型,不必索引到每层,直接model.cuda().half()即可 3.对于半精度模型,优化算法,Adam我在使用过程中,在某些参数的梯度为0的时候,更新权重后,梯度为零的权重变成了NAN,这非常奇怪,但是Adam算法对于全精度数据类型却没有这个问题. 另外,SGD算法对于半精度和全精度计算均没有问题. 还有一个问题是不知道是不是网络…
申明:此教程加工于caffe 如何训练自己的数据图片 一.准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练.但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(听说是google网站的验证码,而我是上不了google的).第二个原因是数据太大了... 我去网上找了一些其它的图片来代替,共有500张图片,分为大巴车.恐龙.大象.鲜花和马五个类,每个类100张.需要的同学,可到…
原文连接:http://blog.kaggle.com/2014/12/22/convolutional-nets-and-cifar-10-an-interview-with-yan-lecun/ 摘要:CIFAR-10竞赛之后,卷积网络之父Yann LeCun接受相关采访.他认为:卷积网络需要大数据和高性能计算机的支持:深层卷积网络的训练时间不是问题,运行时间才是关键.Yann LeCun还分享了他正在做的一些最新研究. Kaggle近期举办了一场 关于CIFAR-10数据集的竞赛,该数据集…
0. 全集 Explained Visually 1. 图像与视觉 Image Kernels 2. 数学操作 Convolution arithmetic:卷积: 3. 神经网络与深度学习 A Neural Network Playground caffe 网络配置文件 .prototxt 的网络模型的可视化:Quick Start - Netscope 4. 计算机视觉…
对于分割网络,如果当成一个黑箱就是:输入一个3x1024x1024 输出4x1024x1024. 我没有使用二分类,直接使用了四分类. 分类网络使用了SegNet,没有加载预训练模型,参数也是默认初始化.为了加快训练,1024输入进网络后直接通过 pooling缩小到256的尺寸,等到输出层,直接使用bilinear放大4倍,相当于直接在256的尺寸上训练. import os import urllib import torch import torch.nn as nn import tor…
上期给大家介绍了YOLO模型的检测系统和具体实现,YOLO是如何进行目标定位和目标分类的,这期主要给大家介绍YOLO是如何进行网络训练的,话不多说,马上开始! 前言: 输入图片首先被分成S*S个网格cell,每个网格会预测B个边界框bbox,这B个边界框来定位目标,每个边界框又包含5个预测:x,y,w,h和置信度confidence.那这取值有什么约束嘛?如下图所示: 黄色的圆圈代表了中间这个网格的中心点,红色的圆圈代表了这个红色方框的中心点,则x,y的取值是两个中心的偏移量和 cell 本身宽…
本文是在windows10上安装了CPU版本的Mindspore,并在mindspore的master分支基础上使用LeNet网络训练MNIST数据集,实践已训练成功,此文为记录过程中的出现问题: (据说此时mindspore的r0.7版本上是直接执行成功的) Windows10 Miniconda 4.8.3 Python 3.7.7 MindSpore master mindspore的gitee地址 [1]首先使用conda activate mindspore 进入mindspore虚拟…
如同前几篇的可视化,这里采用的也是jupyter notebook来进行曲线绘制. // In [1]: #加载必要的库 import numpy as np import matplotlib.pyplot as plt %matplotlib inline import sys,os,caffe #设置当前目录 caffe_root = '/home/bnu/caffe/' sys.path.insert(0, caffe_root + 'python') os.chdir(caffe_ro…
神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使用训练好的数据时,我们需要的是网络给我们输入结果,对于分类问题,我们需要获得分类结果,如下右图最后一层我们得到 的是概率,我们不需要训练及测试阶段的LOSS,ACCURACY层了. 下图是能过$CAFFE_ROOT/python/draw_net.py绘制$CAFFE_ROOT/models/caf…
准备工具: 1. 已编译好的pycaffe 2. Anaconda(python2.7) 3. graphviz 4. pydot  1. graphviz安装 graphviz是贝尔实验室开发的一个开源的绘图工具,它可以很方便绘制结构化的图形网络,支持多种格式输出,如各种常见的图片格式(bmp.png等),PDF,SVG等. graphviz使用dot作为脚本语言,只需要在dot脚本中定义图的顶点和边,以及形状.颜色.字体.填充等样式,graphviz就可以使用合适的布局算法对图形布局,使各顶…
參考博客:https://blog.csdn.net/xiao_lxl/article/details/79106837 1获取源代码:git clone https://github.com/weiliu89/caffe.git2 进入目录中 :cd caffe 3,git checkout ssd 主要参考 https://github.com/weiliu89/caffe/tree/ssd 获取SSD的代码,下载完成后有一个caffe文件夹 git clone https://github…
代码里面用tensorboard保存了训练的日志在logs目录里面 用tensorboard命令打开日志目录:tensorboard --logdir="./logs/" 会显示一个网址: TensorBoard 1.6.0 at http://bnrcDL:6006 (Press CTRL+C to quit) 直接在浏览器打开就好了 但远程访问不能这样: 注意不要去输入终端弹出的网址,要用上面这个网址 https://blog.csdn.net/sinat_35512245/art…
1.报错:“db_lmdb.hpp:14] Check failed:mdb_status ==0(112 vs.0)磁盘空间不足.” 这问题是由于lmdb在windows下无法使用lmdb的库,所以要改成leveldb. 但是要注意:由于backend默认的是lmdb,所以你每一次用到生成的图片leveldb数据的时候,都要把“--backend=leveldb”带上.如转换图片格式时: 又如计算图像的均值时: 还有在.prototxt中 data_param { source: "./mys…
1.需求 WPF本身没有直接把点集合绘制成曲线的函数.可以通过贝塞尔曲线函数来绘制. 贝塞尔曲线类是:BezierSegment,三次贝塞尔曲线,通过两个控制点来控制开始和结束方向. QuadraticBezierSegment,二次贝塞尔,通过一个控制点来控制弯曲方向. 本文使用的是三次. 图片来源维基百科 2.思路 参考文档是:https://www.cnblogs.com/pangliang/archive/2011/03/24/1993308.html 大值思路是根据当前点,前一个点,后…
1. 训练model #!/usr/bin/env sh ./build/tools/caffe train --solver=examples/focal_length/focal_solver.prototxt 2. 测试数据 import caffe from caffe.proto import caffe_pb2 import numpy as np import cv2 run_mode = 'gpu' deploy_file = 'focal_deploy.prototxt' we…