Training LeNet on MNIST with Caffe We will assume that you have Caffe successfully compiled. If not, please refer to the Installation page. In this tutorial, we will assume that your Caffe installation is located at CAFFE_ROOT. Prepare Datasets You w…
在win10机子上装了caffe,感谢大神们的帖子,要入坑caffe-windows的朋友们看这里,还有这里,安装下来基本没什么问题. 好了,本博文写一下使用caffe测试mnist数据集的步骤. 1. 下载mnist数据集. 不太看得懂get_mnist.ps1文件,并且运行无效,所以选择直接从mnist官网下载数据集.下载后解压,从解压后的文件夹提取出四个文件,放在caffe根目录下<caffe-root>\data\mnist下,例如E:\caffe-windows\data\mnist…
我假设已经成功编译caffe,如果没有,请参考http://caffe.berkeleyvision.org/installation.html 在本教程中,我假设你的caffe安装目录是CAFFE_ROOT 一.数据准备 首先,你需要从MNIST网站下载mnist数据,并转换数据格式.可以通过执行以下命令来实现 cd $CAFFE_ROOT ./data/mnist/get_mnist.sh ./examples/mnist/create_mnist.sh 如果显示没有安装wget或者gunz…
这一篇我大概讲讲Caffe框架下MNIST的实现与基于Hi35xx平台下caffe yolox的运用等,供大家参考 1.Caffe介绍与测试 caffe全称Caffe Convolutional Architecture For Feature Embedding,是一个兼具表达性.速度和思维模块化的深度学习框架.由伯克利人工智能研究小组和伯克利视觉和学习中心开发.虽然其内核是用C++编写的,但Caffe有Python和Matlab 相关接口.Caffe支持多种类型的深度学习架构,面向图像分类和…
最近有一个需求是测试单独算子在CPU.Caffe使用的GPU.cuDNN上的性能,一个是使用caffe的time问题,还有一个是使用单独的test功能. time选项的使用,大家都比较熟悉,单独的test功能,需要专门设置一下. 上次编译Caffe的博客中提到https://www.cnblogs.com/jourluohua/p/9191322.html 在make all编译之后,有一个make test是用来编译test功能的,使用test功能的话,需要使用make runtest命令,该…
本篇博客主要用于记录Ubuntu 14.04 64bit操作系统搭建caffe环境,目前针对的的是CPU版本: 1.安装依赖库 sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev CUDA:如果…
jupyter notebook: https://github.com/Penn000/NN/blob/master/notebook/LeNet/LeNet.ipynb LeNet训练MNIST import warnings warnings.filterwarnings('ignore') # 不打印 warning import tensorflow as tf import numpy as np import os 加载MNIST数据集 分别加载MNIST训练集.测试集.验证集 f…
Caffe学习笔记(三):Caffe数据是如何输入和输出的? Caffe中的数据流以Blobs进行传输,在<Caffe学习笔记(一):Caffe架构及其模型解析>中已经对Blobs进行了简单的介绍.下面对caffe数据是如何输入和输出做更加详细的分析. 1.输入/输出之Blobs caffe使用blobs结构来存储.交换并处理网络中正向和反向迭代时的数据和导数信息,blob是caffe的标准数组结构,是caffe中处理和传递实际数据的数据封装包,它提供了一个统一的内存接口,从数学意义上说,bl…
Caffe学习笔记(一):Caffe架构及其模型解析 写在前面:关于caffe平台如何快速搭建以及如何在caffe上进行训练与预测,请参见前面的文章<caffe平台快速搭建:caffe+window7+vs2013>.<Windows平台上Caffe的训练与学习方法(以数据库CIFAR-10为例)>. 本文主要介绍Caffe的总体框架,并对caffe模型进行解析,主要是本人的学习笔记,参考了各种资料,例如:<Caffe官方教程中译本>,网址:http://caffe.b…
Caffe学习笔记(二):Caffe前传与反传.损失函数.调优 在caffe框架中,前传/反传(forward and backward)是一个网络中最重要的计算过程:损失函数(loss)是学习的驱动,类似于视频编码中的率失真代价,是衡量学习的程度,或者说,学习的目的是找到一个网络权重的集合,使得损失函数最小:Solver是通过协调网络的前向推断计算和反向计算来对参数进行更新,从而达到减小loss的目的. 下面将对forward and backward.loss.solver分别进行介绍. 1…