Investigation of Different Nets and Layers】的更多相关文章

Investigation of Different Nets and Layers Overview of AlexNet (MIT Places | Flickr Finetuned | Oxford Flowers) Overview of GoogLeNet/Inception (ImageNet | MIT Places) Mondrian's Broadway - different iterations (10, 20, 30, 40, 50) seperate pages VIS…
mxnet的卷积 kernel = 3  pad=1边界补充0后,不管stride是否1还是2,imgw = 奇数或者偶数, 都是从图像位置(0,0)开始卷积 tensorlfow的卷积 kernel = 3 pad=‘SAME’边界补充0后, imgw = 偶数 stride=1, 是从图像位置(0,0)开始卷积 stride=2, 是从图像位置(1,1)开始卷积 与mxnet不同 imgw = 奇数 stride=1, 是从图像位置(0,0)开始卷积 stride=2, 是从图像位置(0,0…
参考 http://blog.csdn.net/jsond/article/details/72667829 资源: 1.相关的vgg模型下载网址 http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat 2.ImageNet 1000种分类以及排列 https://github.com/sh1r0/caffe-Android-demo/blob/master/app/src/main/assets/s…
caffe.cpp文件完成对网络模型以及模型配置参数的读入和提取,提供了网络模型训练的入口函数train和对模型的测试入口函数test.文件中使用了很多gflags和glog指令,gflags是google的一个开源的处理命令行参数的库,glog是一个有效的日志记录工具. 补充一点CUDA中查询GPU设备属性的知识: CUDA C中的cudaGetDeviceProperties函数可以很方便的获取到设备的信息,caffe.cpp中就使用到了这个函数查询设备信息,函数原型是: cudaError…
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 原文链接 https://www.kdnuggets.com/2017/06/practical-importance-feature-selection…
The human visual system is one of the wonders of the world. Consider the following sequence of handwritten digits: Most people effortlessly recognize those digits as 504192. That ease is deceptive. In each hemisphere of our brain, humans have a prima…
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Generative Adversarial Nets Starting this week, I’ll be doing a new series called Deep Learning Research Review. Every couple weeks or so, I’ll be summa…
Recently Kaggle hosted a competition on the CIFAR-10 dataset. The CIFAR-10 dataset consists of 60k 32x32 colour images in 10 classes. This dataset was collected by AlexKrizhevsky, Vinod Nair, and Geoffrey Hinton. Many contestants used convolutional n…
A Statistical View of Deep Learning (IV): Recurrent Nets and Dynamical Systems Recurrent neural networks (RNNs) are now established as one of the key tools in the machine learning toolbox for handling large-scale sequence data. The ability to specify…
第七部分 让 学习率 和 学习潜能 随时间的变化 光训练就花了一个小时的时间.等结果并非一个令人心情愉快的事情.这一部分.我们将讨论将两个技巧结合让网络训练的更快! 直觉上的解决的方法是,開始训练时取一个较高的学习率,随着迭代次数的增多不停的减小这个值.这是有道理的,由于開始的时候我们距离全局最长处很远.我们想要朝着最长处的方向大步前进:然而里最长处越近,我们就前进的越慎重,以免一步跨过去.举个样例说就是你乘火车回家,但你进家门的时候肯定是走进去.不能让火车开进去. 从讨论深度学习中初始化和学习…