【HDU2815】【拓展BSGS】Mod Tree】的更多相关文章

Mod Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5934    Accepted Submission(s): 1498 Problem Description   The picture indicates a tree, every node has 2 children.  The depth of the nod…
题目链接 Clever - Y 题意 有同余方程 \(X^Y \equiv K\ (mod\ Z)\),给定\(X\),\(Z\),\(K\),求\(Y\). 解法 如题,是拓展 \(Bsgs\) 板子,部分学习内容在这里 \((Click\ here)\). 敲完板子就能获得至少 5 倍经验. 过程中疯狂 \(WA\) 所以总结需要注意的几点-- · 令 \(m = sqrt(p) + 1\) 比较保险,不然有的时候会枚举不到 · 在令 \(a\),\(p\) 互质的循环中,\(b = d\)…
什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSGS算法中是要求a^m在%c条件下的逆元的,如果a.c不互质根本就没有逆元.) 如果x有解,那么0<=x<C,为什么? 我们可以回忆一下欧拉定理: 对于c是素数的情况,φ(c)=c-1 那么既然我们知道a^0=1,a^φ(c)=1(在%c的条件下).那么0~φ(c)必定是一个循环节(不一定是最小的)…
[SPOJ]Power Modulo Inverted(拓展BSGS) 题面 洛谷 求最小的\(y\) 满足 \[k\equiv x^y(mod\ z)\] 题解 拓展\(BSGS\)模板题 #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<set…
调了一周,我真制杖,,, 各种初始化没有设为1,,,我当时到底在想什么??? 拓展BSGS,这是zky学长讲课的课件截屏: 是不是简单易懂.PS:聪哥说“拓展BSGS是偏题,省选不会考,信我没错”,那是因为聪哥早就会了,所以他觉得学这个没用,信他才怪233 #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef lo…
当C不是素数的时候,之前介绍的BSGS就行不通了,需要用到拓展BSGS算法 方法转自https://blog.csdn.net/zzkksunboy/article/details/73162229 典型例题是POJ3243 #include<cstdio> #include<cmath> #include<algorithm> using namespace std; struct Hashmap { ,maxe=; ],nxt[maxe+],w[maxe+]; ];…
Mod Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 96 Accepted Submission(s): 38   Problem Description   The picture indicates a tree, every node has 2 children.  The depth of the nodes whos…
Problem Description   The picture indicates a tree, every node has 2 children.  The depth of the nodes whose color is blue is 3; the depth of the node whose color is pink is 0.  Now out problem is so easy, give you a tree that every nodes have K chil…
题目链接 直接用模板好了.实在不行,反正有队友啊~~~~ #include<bits/stdc++.h> using namespace std; typedef long long LL; map<LL,LL>mp; LL qpow(LL x,LL n,LL mod) //求x^n%mod { LL ret=; ) { ) ret=ret*x%mod; x=x*x%mod; } return ret; } LL gcd(LL a, LL b) { return b? gcd(b,…
上一篇博文中说道了baby step giant step的方法(简称BSGS),不过对于XY mod Z = K ,若x和z并不互质,则不能直接套用BSGS的方法了. 为什么?因为这时候不存在逆元了啊,那么怎么办呢? 既然是x和z不互质,那么我们就想办法让他们互质,再套用BSGS的解法即可.(这就是所谓的消因子法) 代码如下: #include<cstdio> #include<cstring> #include<cstring> #include<iostre…