我用了两天左右的时间完成了这一门课<Introduction to Python for Data Science>的学习,之前对Python有一些基础,所以在语言层面还是比较顺利的,这门课程的最大收获是让我看到了在数据科学中Python的真正威力(也理解了为什么Python这么流行),同时本次课程的交互式练习体验(Datacamp)非常棒.     这门课程主要包括了6个单元的内容,一开始介绍了Python的基本概念(常见数据类型和变量),从第二节开始讲解列表在Python中的使用,并且逐步…
作者:Pier Paolo Ippolito@南安普敦大学 编译:机器学习算法与Python实战(微信公众号:tjxj666) 原文:https://towardsdatascience.com/probability-distributions-in-data-science-cce6e64873a7 介绍 拥有良好的统计背景对于数据科学家的日常工作可能会大有裨益.每次我们开始探索新的数据集时,我们首先需要进行探索性数据分析(EDA),以了解某些特征的概率分布是什么.如果我们能够了解数据分布中…
介绍 "Another day has passed, and I still haven't used y = mx + b." 这听起来是不是很熟悉?我经常听到我大学的熟人抱怨他们花了很多时间的代数方程在现实世界中基本没用. 好吧,但我可以向你保证,并不是这样的.特别是如果你想开启数据科学的职业生涯. 线性代数弥合了理论与概念实际实施之间的差距.对线性代数的掌握理解打开了我们认为无法理解的机器学习算法的大门.线性代数的一种这样的用途是奇异值分解(SVD)用于降维. 你在数据科学中一…
Python编程之列表操作实例详解[创建.使用.更新.删除] 这篇文章主要介绍了Python编程之列表操作,结合实例形式分析了Python列表的创建.使用.更新.删除等实现方法与相关操作技巧,需要的朋友可以参考下 #coding=utf8 ''''' 列表类型也是序列式的数据类型, 可以通过下标或者切片操作来访问某一个或者某一块连续的元素. 列表不仅可以包含Python的标准类型, 而且可以用用户定义的对象作为自己的元素. 列表可以包含不同类型的对象, 列表可以执行pop.empt.sort.r…
Python编程实战主要关注了四个方面 即:优雅编码设计模式.通过并发和编译后的Python(Cython)使处理速度更快.高层联网和图像.书中展示了在Python中已经过验证有用的设计模式,用专家级的代码阐释了这些设计模式,并解释了为什么一些与面向对象设计相关的模式和Python均有关联. 书中通过大量实用的范例代码和三个完整的案例研究,全面而系统地讲解 了如何运用设计模式来规划代码结构,如何通过 并发与Cython等技术提升代码执行速度,以及如 何利用各科IPython程序库来快速开发具体的…
1 政府数据 Data.gov:这是美国政府收集的数据资源.声称有多达40万个数据集,包括了原始数据和地理空间格式数据.使用这些数据集需要注意的是:你要进行必要的清理工作,因为许多数据是字符型的或是有缺失值. Socrata:它是探索政府相数据的另一个好地方.Socrata的一个了不起的地方是,他们有不错的可视化工具,使研究数据更为容易. 一些城市都有自己的数据门户网站设置,可供访问者浏览城市的相关数据.例如,在旧金山数据网站,你可以获得很多数据,从犯罪统计到城市的停车位. 联合国有关网站,例如…
1.matplotlib模块生成直线图和散点图 >>>import matplotlib.pyplot as plt >>>year = [1950,1970,1990,2010]#作为x轴 >>>pop = [2.519,3.692,5.263,6.972]]#作为Y轴 >>>plt.plot(year,pop)#直线图[<matplotlib.lines.Line2D object at 0x000001A6BA9874E0…
假设给定矩阵如下: matrix=[[10,36,52], [33,24,88], [66,76,99]] 那么输出结果应为66(同时满足条件) 代码如下: arr=[[10,36,52], [33,24,88], [66,76,99]] #获取矩阵的元素个数,也就是行数row=len(arr) #row=3print(row)#获取矩阵的列数数,也就是一维数组中的元素个数col=len(arr[0]) #col=3print(col) #有多少行就有多少个行最小值,minrow[col],来进…
Python是门很神奇的语言,历经时间和实践检验,受到开发者和数据科学家一致好评,目前已经是全世界发展最好的编程语言之一.简单易用,完整而庞大的第三方库生态圈,使得Python成为编程小白和高级工程师的首选. 在本文中,我们会分享不同于市面上的python数据科学库(如numpy.padnas.scikit-learn.matplotlib等),尽管这些库很棒,但是其他还有一些不为人知,但同样优秀的库需要我们去探索去学习. 1. Wget 从网络上获取数据被认为是数据科学家的必备基本技能,而Wg…
为什么说 Python 是数据科学的发动机(一)发展历程(附视频中字) 在PyData Seattle 2017中,Jake Vanderplas介绍了Python的发展历程以及最新动态.在这里我们把内容分成上下两篇,先给大家带来上篇--Python的发展历程. 主讲人: Jake Vanderplas是华盛顿大学eScience研究所物理科学研究的负责人.该研究所负责跨学科项目,旨在支持科学领域在数据方面发现.Jake的研究领域包括天文学.天体物理学.机器学习以及可伸缩计算.此外,他是许多开源…