前面介绍了<进阶的Redis之数据持久化RDB与AOF>和<进阶的Redis之Sentinel原理及实战>,这次来了解下Redis的集群功能,以及其中哈希分片原理. 集群分片模式 如果Redis只用复制功能做主从,那么当数据量巨大的情况下,单机情况下可能已经承受不下一份数据,更不用说是主从都要各自保存一份完整的数据.在这种情况下,数据分片是一个非常好的解决办法. Redis的Cluster正是用于解决该问题.它主要提供两个功能: 自动对数据分片,落到各个节点上 即使集群部分节点失效…
普通 Hash 分布算法的 PHP 实现 首先假设有 2 台服务器:127.0.0.1:11211 和 192.168.186.129:11211 当存储的 key 经过对 2 (2 台服务器)取模运算得出该 key 应该保存到的服务器: <?php $server = array( array('host' => '127.0.0.1', 'port' => 11211), array('host' => '192.168.186.129', 'port' => 11211…
上一篇<分布式数据缓存中的一致性哈希算法> 文章中讲述了一致性哈希算法的基本原理和实现,今天就以 Redis Cluster 为例,详细讲解一下分布式数据缓存中的数据分片,上线下线时数据迁移以及请求重定向等操作. Redis 集群简介 Redis Cluster 是 Redis 的分布式解决方案,在 3.0 版本正式推出,有效地解决了 Redis 分布式方面的需求. Redis Cluster 一般由多个节点组成,节点数量至少为 6 个才能保证组成完整高可用的集群,其中三个为主节点,三个为从节…
KV集群的请求分发 假定N为后台服务节点数,当前台携带关键字key发起请求时,我们通常将key进行hash后采用模运算 hash(key)%N 来将请求分发到不同的节点上, 后台节点的增删会引起几乎所有key的重新映射, 这样会造成大量的数据迁移,如果数据量大的话会导致服务不可用. 一致性哈希机制 我倾向于称之为一致性哈希机制而不是算法, 因为这其实和算法没太大关系. 设计这种机制的目的是当节点增减时尽量减小重新映射的key的数量, 尽量将key还映射到原来的节点上. 而对于一致性哈希机制, 如…
下面是来自知乎大神的一段说明,个人觉得非常清晰,就收藏了. 为什么集群? 通常,为了提高网站响应速度,总是把热点数据保存在内存中而不是直接从后端数据库中读取.Redis是一个很好的Cache工具.大型网站应用,热点数据量往往巨大,几十G上百G是很正常的事儿,在这种情况下,如何正确架构redis呢?   首先,无论我们是使用自己的物理主机,还是使用云服务主机,内存资源往往是有限制的,scale up不是一个好办法,我们需要scale out横向可伸缩扩展,这需要由多台主机协同提供服务,即分布式多个…
文章同步发表在博主的网站朗度云,传输门:http://www.wolfbe.com/detail/201608/341.html 1.背景        我们都知道memcached服务器是不提供分布式功能的,memcached的分布式完全是由客户端来实现的.在部署memcached服务器集群时,我们需要把缓存请求尽可能分散到不同的缓存服务器中,这样可以使得所有的缓存空间都得到利用,而且可以降低单独一台缓存服务器的压力.     最简单的一种实现是,缓存请求时通过计算key的哈希值,取模后映射到…
准备工作: ① 配置文件 config.php ② 封装 Memcached 类 hash.class.php,包含普通哈希算法(取模)和一致性哈希算法 ③ 初始化 Memcached 节点信息 init.php ④ 减少 Memcached 节点 down.php ⑤ 统计命中率 statistics.php ⑥ 使用 Highcharts(4.1.9) js 图表库来展示减少节点后两种算法命中率的变化 1. 配置文件 config.php <?php /* Memcached 配置文件 */…
上篇文章刚刚介绍完redis的主从复制集群,但主从复制集群主要是为了解决redis集群的单点故障问题,通过整合哨兵能实现集群的高可用:但是却无法解决数据容量以及单节点的压力问题,所以本文继续介绍redis的分片集群:分片集群即将不同的数据分发到不同的redis实例(或者主从集群),每个redis实例没有关联,这样当数据量过大时就做到了数据的分治,如果某个实例故障也不至于丢失所有的数据:下面我会首先解决分片集群的常用实现方案,然后介绍如何搭建Twitter和predixy两种代理实现的redis集…
 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用.        一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义:   1.平衡性(Balance):平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用.…
转自:https://my.oschina.net/yaohonv/blog/1610096 本文为实现分布式任务调度系统中用到的一些关键技术点分享——Consistent Hashing算法原理和Java实现,以及效果测试. 背景介绍 一致性Hashing在分布式系统中经常会被用到, 用于尽可能地降低节点变动带来的数据迁移开销.Consistent Hashing算法在1997年就在论文Consistenthashing and random trees中被提出. 先来简单理解下Hash是解决…