本文由云+社区发表 作者:腾讯技术工程 导语:最近几年来,深度学习在推荐系统领域中取得了不少成果,相比传统的推荐方法,深度学习有着自己独到的优势.我们团队在QQ看点的图文推荐中也尝试了一些深度学习方法,积累了一些经验.本文主要介绍了一种用于推荐系统召回模块的深度学习方法,其出处是Google在2016年发表于RecSys的一篇用于YouTube视频推荐的论文.我们在该论文的基础上做了一些修改,并做了线上AB测试,与传统的协同召回做对比,点击率等指标提升明显. 为了系统的完整性,在介绍主模型前,本…
转载自知乎:Roofline Model与深度学习模型的性能分析 在真实世界中,任何模型(例如 VGG / MobileNet 等)都必须依赖于具体的计算平台(例如CPU / GPU / ASIC 等)才能展现自己的实力.此时,模型和计算平台的"默契程度"会决定模型的实际表现.Roofline Model 提出了使用 Operational Intensity(计算强度)进行定量分析的方法,并给出了模型在计算平台上所能达到理论计算性能上限公式. 一.指标介绍 1.计算平台的两个指标:算…
使用TVM将深度学习模型编译为WebGL TVM带有全新的OpenGL / WebGL后端! OpenGL / WebGL后端 TVM已经瞄准了涵盖各种平台的大量后端:CPU,GPU,移动设备等.这次,添加了另一个后端:OpenGL / WebGL. OpenGL / WebGL使能够在未安装CUDA的环境中利用GPU.在浏览器中使用GPU的方法. 后端允许以3种不同的方式使用OpenGL / WebGL: 本地OpenGL:可以将深度学习模型编译为OpenGL,完全使用Python在本地计算机…
话不多说,直接上代码 def stacking_first(train, train_y, test): savepath = './stack_op{}_dt{}_tfidf{}/'.format(args.option, args.data_type, args.tfidf) os.makedirs(savepath, exist_ok=True) count_kflod = 0 num_folds = 6 kf = KFold(n_splits=num_folds, shuffle=Tru…
本文来自网易云社区 作者:穆学锋 简介:传统的搜索个性化做法是定义个性化的标签,将用户和商品通过个性化标签关联起来,在搜索时进行匹配.传统做法的用户特征基本是离线计算获得,不够实时:个性化标签虽然具有一定的泛化能力,但是其准确性有所不足,不能很好的做精准个性化.本文提出两个创新优化,一是打通实时用户行为的获取流程,并在实时用户流下采用FTRL算法不断的更新用户特征的权重,将用户实时感兴趣的商品加权,达到online training:二是在保证相关性的前提下,采取推荐的思路,避开打个性化标签,结…
我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬创公开课]的GAN分享.GAN现在对于无监督图像标注来说是个神器. Deep? 生成模型GAN就是一种在拟合一张图像数组分布的一种模型,是概率统计结合深度学习之后的一次升级. GAN是概率统计到深度学习世界"秀"存在 生成模型分为两个部分:生成模型+判别模型.生成模型学习联合概率分布p(x…
本文记录几个在广告和推荐里面rank阶段常用的模型.广告领域机器学习问题的输入其实很大程度了影响了模型的选择,因为输入一般维度非常高,稀疏,同时包含连续性特征和离散型特征.模型即使到现在DeepFM类的方法,其实也都很简单.模型的发展主要体现于对特征的充分挖掘上,比如利用低阶和高阶特征.尝试自动学习交叉特征而非手动.尝试更精准地实现高阶特征(bounded-degree). 广告相关的领域最早大行其道的模型当属LR模型,原因就是LR模型简单,可解释性好,拓展性高,精心细调之后模型效果也会非常好.…
概述 Apple的Core ML 3是一个为开发人员和程序员设计的工具,帮助程序员进入人工智能生态 你可以使用Core ML 3为iPhone构建机器学习和深度学习模型 在本文中,我们将为iPhone构建一个全新的应用程序! 介绍 想象一下,在不需要深入了解机器学习的情况下,使用最先进的机器学习模型来构建应用程序.这就是Apple的Core ML 3! 你是Apple的狂热粉丝吗?你用iPhone吗?有没有想过Apple是如何利用机器学习和深度学习来驱动其应用和软件的? 如果你对以上任何一个问题…
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? 引用三年前一位网友的话来讲: “Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而naacl则有0篇.有一种说法是,语言(词.句子.篇章等)属于人类认知过程中产生的高层认知抽象实体,而语音和图像属于较为底层的原始输入信号,所以后两者更适…
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公式,也就是神经网络的前向算法.我们一般使用现成的网络,如inceptionV4,mobilenet等. 定义loss,选择优化器,来让loss最小 对数据进行迭代训练,使loss到达最小 在测试集或者验证集上对准确率进行评估 下面我们来看深度学习模型训练中遇到的难点及如何解决 2 模型训练难点及解决…
当你的深度学习模型变得很多时,选一个确定的模型也是一个头痛的问题.或者你可以把他们都用起来,就进行模型融合.我主要使用stacking和blend方法.先把代码贴出来,大家可以看一下. import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import roc_curve SEED = 222 np.random.seed(SEED) from sklearn.mod…
原文链接: https://zhuanlan.zhihu.com/p/34204282 最近在不同的计算平台上验证几种经典深度学习模型的训练和预测性能时,经常遇到模型的实际测试性能表现和自己计算出的复杂度并不完全吻合的现象,令人十分困惑.机缘巧合听了Momenta的技术分享后,我意识到问题的答案其实就在于 Roof-line Model 这个理论,于是认真研究了一下相关论文.现在把自己的心得总结出来,分享给大家. 在真实世界中,任何模型(例如 VGG / MobileNet 等)都必须依赖于具体…
网上有很多关于Java内存模型的文章,在<深入理解Java虚拟机>和<Java并发编程的艺术>等书中也都有关于这个知识点的介绍.但是,很多人读完之后还是搞不清楚,甚至有的人说自己更懵了.本文,就来整体的介绍一下Java内存模型,目的很简单,让你读完本文以后,就知道到底Java内存模型是什么,为什么要有Java内存模型,Java内存模型解决了什么问题等. 本文中,有很多定义和说法,都是笔者自己理解后定义出来的.希望能够让读者可以对Java内存模型有更加清晰的认识.当然,如有偏颇,欢迎…
[NIPS2017]“深度高斯模型”可能为深度学习的可解释性提供概率形式的理论指导?亚马逊机器学习专家最新报告 专知 [导读]在NIPS 2017上,亚马逊机器学习专家Neil Lawrence在12月4日在长滩现场进行了一场“基于高斯模型的深度概率模型”的演讲报告.这场报告Neil Lawrence形象化地讲解了使用高斯过程来建模深度网络,并且深入浅出地讲解了什么是机器学习,不确定性的含义以及深度神经网络和高斯过程的一些关联等等,PPT内容干货很多,是学习机器学习概率理论的好文,后续专知会持续…
深度挖坑:从数据角度看人脸识别中Feature Normalization,Weight Normalization以及Triplet的作用 周翼南 北京大学 工学硕士 373 人赞同了该文章 基于深度学习的人脸识别发展,从deepid开始,到今年(或者说去年),已经基本趋于成熟. 凡是基于识别的,总是离不开三个东西:数据,网络,以及loss. 数据方面, 目前的公开数据集中有主打类别数的MS_celeb_1M,有主打各种姿态角与年龄的VggFace2:也有一些主打高质量的数据集,像WebFac…
flask部署深度学习模型 作为著名Python web框架之一的Flask,具有简单轻量.灵活.扩展丰富且上手难度低的特点,因此成为了机器学习和深度学习模型上线跑定时任务,提供API的首选框架. 众所周知,Flask默认不支持非阻塞IO的,当请求A还未完成时候,请求B需要等待请求A完成后才能被处理,所以效率非常低.但是线上任务通常需要异步.高并发等需求,本文总结一些在日常使用过程中所常用的技巧. 一.前沿 异步和多线程有什么区别?其实,异步是目的,而多线程是实现这个目的的方法.异步是说,A发起…
深度学习模型的调优,首先需要对各方面进行评估,主要包括定义函数.模型在训练集和测试集拟合效果.交叉验证.激活函数和优化算法的选择等. 那如何对我们自己的模型进行判断呢?——通过模型训练跑代码,我们可以分别从训练集和测试集上看到这个模型造成的损失大小(loss),还有它的精确率(accuracy). 目录 前言 1.定义模型函数 2.交叉验证(Cross-validation) 3.优化算法 4.激活函数(activation) 5.dropout 6.early stopping 模型训练实战案…
本文适合有 Java 基础的人群 作者:DJL-Keerthan&Lanking HelloGitHub 推出的<讲解开源项目> 系列.这一期是由亚马逊工程师:Keerthan Vasist,为我们讲解 DJL(完全由 Java 构建的深度学习平台)系列的第 4 篇. 一.前言 很长时间以来,Java 都是一个很受企业欢迎的编程语言.得益于丰富的生态以及完善维护的包和框架,Java 拥有着庞大的开发者社区.尽管深度学习应用的不断演进和落地,提供给 Java 开发者的框架和库却十分短缺.…
Lecture 9 CNN Architectures 参见:https://blog.csdn.net/qq_29176963/article/details/82882080#GoogleNet_83 一. LeNet-5: 神经网络的第一个实例,用于识别邮票上的手写数字,使用步长为1,大小为5*5的卷积核,对第一层进行操作,然后进行池化,通过几层卷积和池化,在网络的最后还有一些全连接层.LeNet在数据识别领域取得了成功. 二. AlexNet: Alexnet是2012年ImageNet…
JVM内存模型你只要看这一篇就够了 我是一只孤傲的鱼鹰 让我们不厌其烦的从内存模型开始说起:作为一般人需要了解到的,JVM的内存区域可以被分为:线程栈,堆,静态方法区(实际上还有更多功能的区域,并且这里说的是JVM的内存区域,实际上Java程序还可以调用native方法使用直接内存).本文接下来就重点说说这三个区域. 1. 线程栈 简介 注意这个栈和数据结构中的stack有相似之处,但并不是用户态的.准确的讲它压入的每个栈帧(Stack Frame)是程序指令以及局部变量表,每个方法调用对应一个…
深度生成模型 1.玻尔兹曼机…
转载:Netty(二) 从线程模型的角度看 Netty 为什么是高性能的? 传统 IO 在 Netty 以及 NIO 出现之前,我们写 IO 应用其实用的都是用 java.io.* 下所提供的包. 比如下面的伪代码: ServeSocket serverSocket = new ServeSocket(8080); Socket socket = serverSocket.accept() ; BufferReader in = .... ; String request ; while((re…
  利用 TFLearn 快速搭建经典深度学习模型 使用 TensorFlow 一个最大的好处是可以用各种运算符(Ops)灵活构建计算图,同时可以支持自定义运算符(见本公众号早期文章<TensorFlow 增加自定义运算符>).由于运算符的粒度较小,在构建深度学习模型时,代码写出来比较冗长,比如实现卷积层:5, 9 这种方式在设计较大模型时会比较麻烦,需要程序员徒手完成各个运算符之间的连接,像一些中间变量的维度变换.运算符参数选项.多个子网络连接处极易发生问题,肉眼检查也很难发现代码中潜伏的…
在NLP中深度学习模型何时需要树形结构? 前段时间阅读了Jiwei Li等人[1]在EMNLP2015上发表的论文<When Are Tree Structures Necessary for Deep Learning of Representations?>,该文主要对比了基于树形结构的递归神经网络(Recursive neural network)和基于序列结构的循环神经网络(Recurrent neural network),在4类NLP任务上进行实验,来讨论深度学习模型何时需要树形结…
简介 每过一段时间,就会有一个深度学习库被开发,这些深度学习库往往可以改变深度学习领域的景观.Pytorch就是这样一个库. 在过去的一段时间里,我研究了Pytorch,我惊叹于它的操作简易.Pytorch是我迄今为止所使用的深度学习库中最灵活的,最轻松的. 在本文中,我们将以实践的方式来探索Pytorch,包括基础知识与案例研究.我们会使用numpy和Pytorch分别从头开始构建神经网络,看看他们的相似之处. 提示:本文假设你已经对深度学习有一定的了解.如果你想深入学习深度学习,请先阅读本文…
Auto-Keras 是一个开源的自动机器学习库.Auto-Keras 的终极目标是允许所有领域的只需要很少的数据科学或者机器学习背景的专家都可以很容易的使用深度学习.Auto-Keras 提供了一系列函数来自动搜索深度学习模型的网络和超参数. 安装: pip install autokeras 样例: import autokeras as ak clf = ak.ImageClassifier() clf.fit(x_train, y_train) results = clf.predict…
版权声明:原创.欢迎转载,转载请注明来源,谢谢. https://blog.csdn.net/qq_41910280/article/details/83279129 修复STS4 server中没有Tomcat的问题( 必看, 官方推荐,包教包会,国内首发) Pivotal 官方为了减少spring tool suite 4(sts4.0.0)安装包大小,提高性能,删去了多种适配器,其中就包括我们常用的Tomcat. 修复步骤如下: 点击Help, 选择 <Install New Softwa…
https://blog.csdn.net/lovelyaiq/article/details/79929393 https://blog.csdn.net/qq_29462849/article/details/85272575 Opencv调用深度学习模型 2018年04月13日 15:19:54 TiRan_Yang 阅读数:1150更多 个人分类: TensorFlowPython深度学习   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.ne…
CUDA上深度学习模型量化的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数都用诸如int8和float16低精度数据类型表示.降低的数据带宽减少了推理时间和存储器/存储要求,以及功耗.在适当的量化方案下,可以最小化量化模型的精度下降.因此,量化模型特别适合研究人员和开发人员,使大型模型适合在各种设备(例如GPU,CPU和移动设备)上部署. 通常通过手工微内核,针对不同的工…
CUDA上的量化深度学习模型的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数都用诸如int8和的低精度数据类型表示float16.降低的数据带宽减少了推理时间和存储器/存储需求,以及功耗.同时,在适当的量化方案下,可以最小化量化模型的精度下降.量化模型特别适合研究人员和开发人员,使大型模型适合在各种设备(例如GPU,CPU和移动设备)上部署. 以前,通常通过手工微内核针对…