[CF932E]Perpetual Subtraction(NTT,线性代数) 题面 洛谷 CF 题解 设\(f_{i,j}\)表示\(i\)轮之后这个数恰好为\(j\)的概率. 得到转移:\(\displaystyle f_{i,j}=\sum_{k=j}^{n}f_{i-1,k}*\frac{1}{k+1}\). 看成生成函数就有\(\displaystyle F_i(x)=\sum_{j=0}^{n}x^j\sum_{k\ge j}\frac{f_{i-1,k}}{k+1}\). 把两维换…
手动博客搬家: 本文发表于20181212 09:37:21, 原地址https://blog.csdn.net/suncongbo/article/details/84962727 呜啊怎么又是数学了啊...数学比例\(\frac{16}{33}=0.4848\) orz yhx-12243神仙 题目链接: https://codeforces.com/contest/947/problem/E 题意: 有一个\([0,n]\)的随机数\(x\)初始为\(i\)的概率为\(p_i\). \(m…
Codeforces 题目传送门 & 洛谷题目传送门 神仙题 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 首先考虑最朴素的 \(dp\),设 \(dp_{z,i}\) 表示经过 \(z\) 次操作后剩下的数为 \(i\) 的概率,那么显然有 \(dp\) 转移方程 \(dp_{z,i}=\sum\limits_{j\ge i}dp_{z-1,j}·\dfrac{1}{j+1}\). 边界条件 \(dp_{0,i}=p_i\) 直接递推显然不行,考虑优化,我们记 \(F_z(x)…
生成函数好题! 搬一手铃悬的题解(侵删) 现在只需要考虑怎么求出g和逆变换即可,其实也就是对函数F(x)求F(x+1)和F(x-1). 直接二项式定理展开发现是个卷积的形式,大力NTT即可. #include<bits/stdc++.h> #define N 440000 #define eps 1e-7 #define inf 1e9+7 #define db double #define ll long long #define ldb long double using namespac…
\(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机取整数 \(r\in[0,x]\),令 \(x\leftarrow r\).求变换完成后 \(x=i~(i=0..n)\) 的概率.答案模 \(998244353\). \(\mathcal{Solution}\)   令向量 \(\boldsymbol p\) 为此时 \(x\) 的取值概率,显然…
广告 ZJOI2018Round2游记 All Falls Down 非常感谢学弟学妹们捧场游记虽然这是一篇假游记 ZJOI Round1今天正式落下帷幕.在这过去的三天里遇到了很多朋友,见识了很多有趣的人和事.或许这只是我整个OI生涯中的卷首一场,但是允许我谨此游记献给所有的一切.所有的你们. ZJOIday1游记 8:30:然而报告厅里选手们陆陆续续地并没有到齐-- 第一场主讲人是绍一的任轩笛,讲课pdf的标题一如既往地是「杂题选讲」听主讲人说都是一些套路题 Binary Cards 不上升…
[CF932E]Team Work 题意:求$\sum\limits_{i=1}^nC_n^ii^k$,答案模$10^9+7$.$n\le 10^9,k\le 5000$. [BZOJ5093]图的价值 题意:“简单无向图”是指无重边.无自环的无向图(不一定连通).一个带标号的图的价值定义为每个点度数的k次方的和.给定n和k,请计算所有n个点的带标号的简单无向图的价值之和.因为答案很大,请对998244353取模输出. $n\le 10^9,k\le 200000$ 题解:对于第二道题我们显然可…
CF题面 题意:求\(\sum_{i=0}^{n}\binom{n}{i}i^k\) \(n\le10^9,k\le5000\) 模\(10^9+7\) BZOJ题面 题意:求\(n*2^{\frac{n(n-1))}{2}-(n-1)}*\sum_{i=0}^{n-1}\binom{n-1}{i}i^k\) \(n\le10^9,k\le2*10^5\) 模\(998244353\) 第二类斯特林数 赶紧去学第二类斯特林数啊 第二类斯特林数:\(S(n,m)\),表示把\(n\)个不同的的球放…
title: [线性代数]2-4:矩阵操作(Matrix Operations) toc: true categories: Mathematic Linear Algebra date: 2017-09-05 17:15:19 keywords: addition subtraction multiplication inner product outer product Abstract: 矩阵基本计算,包括加减乘法,主要是乘法的几种不同的理解 Keywords: Addition,Subt…
因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还蛮合适的( 首先我们设 \(f_i\) 为权值之和为 \(i\) 的符合要求的二叉树的个数. 显然可以枚举根节点的权值.左子树的权值之和进行转移. 也就是 \(f_i=\sum\limits_{x\in S}\sum\limits_{y=0}^{i-S}f_yf_{i-x-y}\) 如果我们记 \(…