如何在没有大量用户数据的情况下设计个性化推荐系统并且让用户对推荐结果满意从而愿意使用推荐系统,就是冷启动问题. 冷启动问题主要分为三类: (1) 用户冷启动:如何给新用户做个性化推荐的问题,新用户刚使用网站的时候,系统并没有他的行为数据: (2) 物品冷启动:解决如何将新的物品推荐给可能对它感兴趣的用户: (3) 系统冷启动:如何在新开发网站设计个性化推荐系统,此时网站上用户很少,用户行为也少,只有一些商品的信息. 协同过滤推荐基于这样的假设:为用户找到他真正感兴趣的内容的方法是,首先找与他兴趣…