GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 Description Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b.…
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the num…
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the num…
Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6664    Accepted Submission(s): 3997 Problem Description Eddy's interest is very extensive, recently he is interested in prime…
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是质数,否则\(n\)是合数. 代码 bool is_prime(int n){ if(n<2) return 0; int m=sqrt(n); for(int i=2;i<=m;i++){ if(n%i==0) return 0; } return 1; } 方法二.线性筛 用 \(O(n)\)…
题目大意 给定两个数a,b的GCD和LCM,要求你求出a+b最小的a,b 题解 GCD(a,b)=G GCD(a/G,b/G)=1 LCM(a/G,b/G)=a/G*b/G=a*b/G^2=L/G 这样的话我们只要对L/G进行质因数分解,找出最接近√(L/G)的因子p,最终结果就是a=p*G,b=L/p,对(L/G)就是套用Miller–Rabin和Pollard's rho了,刚开始Pollard's rho用的函数也是 f(x)=x^2+1,然后死循环了....改成f(x)=x^2+c(c<…
题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd   lcm/gcd=a/gcd*b/gcd 可知a/gcd与b/gcd互质,由此我们可以先用Pollard_rho法对lcm/gcd进行整数分解, 然后对其因子进行深搜找出符合条件的两个互质的因数,然后再都乘以gcd即为输出答案. #include <iostream> #include <stdio.h> #include <alg…
#include<iostream> #include<cstdio> #include<queue> #include<cstring> #include<algorithm> #include<cmath> #include<cstdlib> #include<ctime> #define lson l, m, rt<<1 #define rson m+1, r, rt<<1|1 #…
x = lcm/gcd,假设答案为a,b,那么a*b = x且gcd(a,b) = 1,因为均值不等式所以当a越接近sqrt(x),a+b越小. x的范围是int64的,所以要用Pollard_rho算法去分解因子.因为a,b互质,所以我们把相同因子一起处理. 最多16个不同的因子:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47, 乘积为 614889782588491410, 乘上下一个质数53会爆int64范围. 所以剩下暴力枚举一下就好. #include…
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是素数,则n至少有一个(1, sqrt(n) ]范围内的素数因子 定理3:定义f(n)为不大于n的素数的个数,则 f(n) 近似等于 n/ln(n) (ln为自然对数) ,具体请参考here 求不超过n的素数                         本文地址 算法1:埃拉托斯特尼筛法,该算法的…
C语言单元測试 对于敏捷开发来说,单元測试不可缺少,对于Java开发来说,JUnit非常好,对于C++开发,也有CPPUnit可供使用,而对于传统的C语言开发,就没有非常好的工具可供使用,能够找到的有这么几个工具: CuTest -- CuTest(Cute Test)是一个很easy的C语言单元測试工具.在使用它的时候,仅仅须要包括两个文件“CuTest.c CuTest.h”,然后就能够写測试用例,进行測试了.它对用例差点儿没有管理功能,报表输出也很easy,能够用来试验单元測试的基本想法.…
看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数,a与n互质,则an-1Ξ1(mod n).于是有人想过把它倒过来判断n是否为素数.首先,若a与n不互质,那么n为合数.所以只需要满足an-1Ξ1(mod n)即可,这个a干脆就让它等于2了.即判断2n-1Ξ1(mod n)是否成立.若不成立,那么n必定为合数.但成立时n就是素数吗?又有人找出了个数:…
原题链接:http://poj.org/problem?id=2429 GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 17639 Accepted: 3237 Description Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the l…
判断正整数p是否是素数 方法一 朴素的判定   …
题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两个算法看懂了O(∩_∩)O~~ Miller–Rabin主要用到了费马小定理,即:设p是一个素数,a是一个正整数且p不整除a,则ap-1≡1(mod p).若x=b(n-1)/2,x2=bn-1≡1(mod n),如果n是一个素数,则x≡1(mod n)或者x≡-1(mod n).因此,一旦我们有bn-1≡1…
/* 题目:给出一个数 如果是prime 输出prime 否则输出他的最小质因子 Miller Rabin +Poller Rho 大素数判定+大数找质因子 后面这个算法嘛 基于Birthday Paradox 简单点说就是 在 1到100 内去一个数 ai ai==42的概率很小 但是如果取两个数 ai bi ai-bi==42 的概率就会变大 应用到找素因子上 就不用像试除法那样一个一个的试 但是如果枚举ai bi 显然也很slow 那么有一个非常好使(奇怪)的函数 f(x)=x*x+c 这…
何为Miller Rabin算法 首先看一下度娘的解释(如果你懒得读直接跳过就可以反正也没啥乱用:joy:) Miller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重要的地位.通过比较各种素数测试算法和对Miller-Rabin算法进行的仔细研究,证明在计算机中构建密码安全体系时, Miller-Rabin算法是完成素数测试的最佳选择.通过对Miller-Rabin 算 法底层运算的优化,可以取得较以往实现更好的性能.[1]  随着信息技术的发展.网络的普及和电…
链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约数. 思路:大数的质因数分解仅仅能用随机算法Miller Rabin和Pollard_rho.在測试多的情况下正确率是由保证的. 代码: #include <iostream> #include <cstdio> #include <cstring> #include &l…
定义: Miller Rabin算法是一个随机化素数测试算法,作用是判断一个数是否是素数,且只要你脸不黑以及常数不要巨大一般来讲都比\(O(\sqrt n)\)的朴素做法更快. 定理: Miller Rabin主要基于费马小定理: \[a ^ {p-1} \equiv 1 (mod p)\]其中\(p\)是质数. 于是就有闲得没事干的一群科学家们想,这个问题的逆命题是否成立呢? 逆命题:若对于任意\(a\),\(a ^ {p-1} \equiv 1 (mod p)\)都成立,那么\(p\)是质数…
在做这道题之前,我们首先来尝试签到题. 签到题 我们定义一个函数:\(qiandao(x)\) 为小于等于 x 的数中与 x 不互质的数的个数.要求 \(\sum\limits _{i=l}^r qiandao(i)\) 容易发现 \(qiandao(x)\) 只需求 \(\phi(x)\),不互质的个数就是另外一半. 那么问题转化为了如何筛出区间 \(\phi\) 的值.考虑到值域最大只有 \(1e12\).并且区间长度小于一百万,所以可以尝试筛根号以内素数求解. 我们知道欧拉函数计算公式为…
GCD & LCM Inverse Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10621   Accepted: 1939 Description Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a…
\(Miller Rabin\)总结: 这是一个很高效的判断质数的方法,可以在用\(O(logn)\) 的复杂度快速判断一个数是否是质数.它运用了费马小定理和二次探测定理这两个筛质数效率极高的方法. 费马小定理判质数: \(a^{p-1}\equiv1\mod p\) 这个定理在p为质数的时候是成立的,所以我们可以如果要判断p是否是质数,可以\(rand\)几个a值然后照着这个式子来算,如果算出来不是1那说明p一定不是质数. 但在我们的自然数中,如果照着这个式子算出来的答案为1,也是有可能不是质…
GCD & LCM Inverse Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9928   Accepted: 1843 Description Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a a…
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1044  Solved: 322[Submit][Status][Discuss] Description   Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如果不是质数,输出它最大的质因子是哪个.…
0.1 一些闲话 最近一次更新是在2019年11月12日.之前的文章有很多问题:当我把我的代码交到LOJ上,发现只有60多分.我调了一个晚上,尝试用{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 61, 24251, 2147483647, 998244353}这么一大串数作为基底,然后左改右改,总算过去了.特别感谢 @骗分过样例 的提醒,现在张贴的代码应该是值得信赖的了. 之前我的同学好像就指出过我的文章的很多问题.比如说我之前写到,Miller Rabin在…
MD5和RSA是网络传输中最经常使用的两个算法,了解这两个算法原理后就能大致知道加密是怎么一回事了.但这两种算法使用环境有差异,刚好互补. 一.MD5算法 首先MD5是不可逆的,仅仅能加密而不能解密.比方明文是yanzi1225627,得到MD5加密后的字符串是:14F2AE15259E2C276A095E7394DA0CA9  但不能由后面一大串倒推出yanzi1225627.因此能够用来存储用户输入的password在server上.如今下载文件校验文件是否中途被篡改也是用的它,原理參见:h…
hibernate在写数据库配置文件时很的不确定,必须进行必要的測试保证数据库结构的正确性.所以能够应用junit进行測试. 使用junit很easy,eclipse仅仅须要右键项目新建一个junit test case就可以(填写类名和包名).然后在相应位置写相应的代码执行測试就可以. 以下给出一个经常使用的hibernate測试框架: package com.atguigu.hibernate.entities; import java.io.FileInputStream; import…
1. 使用DS-5 Streamline定位瓶颈 DS-5 Streamline要求GPU驱动启用性能測试,在Mali GPU驱动中激活性能測试对性能影响微不足道. 1.1 DS-5 Streamline简单介绍 可使用DS-5 Streamline从CPU和Mali GPU中实时收集性能计数器.然后以图形方式显示这些计数器.其主要功能例如以下:     • 收集计数器--从CPU和Mali GPU中     • 保存收集到的计数器数据以供回放     • 查看显示GPU活动.GPU活动和Fra…
My Blog:http://www.outflush.com/ 在单元測试中,有6个总结出的值得測试的方面,这6个方面统称为 Right-BICEP.通过这6个方面的指导.能够较全然的測试出代码中的bug.本文就是简单的介绍 Right-BICEP 究竟指的哪6个方面,以及当中边界測试中的 CORRECT 助记短语. Right – Are the results right? 结果是否正确? B – are all the boundary conditions correct? 全部边界条…
如今,已经有大量的Android自己主动化測试架构或工具可供我们使用,当中包含:Activity Instrumentation, MonkeyRunner, Robotium, 以及Robolectric.另外LessPainful也提供服务来进行真实设备上的自己主动化測试. Android自身提供了对instrumentation測试的基本支持,当中之中的一个就是位于android.test包内的ActivityInstrumentationTestCase2类,它扩展了JUnit的Test…