Spark是一个基于内存的分布式计算框架.执行在其上的应用程序,依照Action被划分为一个个Job.而Job提交执行的总流程.大致分为两个阶段: 1.Stage划分与提交 (1)Job依照RDD之间的依赖关系是否为宽依赖.由DAGScheduler划分为一个个Stage.并将每一个Stage提交给TaskScheduler: (2)Stage随后被提交,并由TaskScheduler将每一个stage转化为一个TaskSet: 2.Task调度与运行:由TaskScheduler负责将Task…
Spark是一个基于内存的分布式计算框架,运行在其上的应用程序,按照Action被划分为一个个Job,而Job提交运行的总流程,大致分为两个阶段: 1.Stage划分与提交 (1)Job按照RDD之间的依赖关系是否为宽依赖,由DAGScheduler划分为一个个Stage,并将每个Stage提交给TaskScheduler: (2)Stage随后被提交,并由TaskScheduler将每个stage转化为一个TaskSet: 2.Task调度与执行:由TaskScheduler负责将TaskSe…
话说在<Spark源代码分析之五:Task调度(一)>一文中,我们对Task调度分析到了DriverEndpoint的makeOffers()方法.这种方法针对接收到的ReviveOffers事件进行处理.代码例如以下: // Make fake resource offers on all executors     // 在全部的executors上提供假的资源(抽象的资源.也就是资源的对象信息,我是这么理解的)     private def makeOffers() {       /…
Android多线程分析之中的一个:使用Thread异步下载图像 罗朝辉 (http://blog.csdn.net/kesalin) CC 许可.转载请注明出处 打算整理一下对 Android Framework 中多线程相关知识的理解.主要集中在 Framework 层的 Thread, Handler, Looper, MessageQueue, Message, AysncTask,当然不可避免地要涉及到 native 方法,因此也会分析 dalvik 中和线程以及消息处理相关的代码:如…
继上篇文章<HBase源代码分析之HRegionServer上MemStore的flush处理流程(一)>遗留的问题之后,本文我们接着研究HRegionServer上MemStore的flush处理流程.重点讲述下怎样选择一个HRegion进行flush以缓解MemStore压力,还有HRegion的flush是怎样发起的. 我们先来看下第一个问题:怎样选择一个HRegion进行flush以缓解MemStore压力.上文中我们讲到过flush处理线程假设从flushQueue队列中拉取出的一个…
在<HBase源代码分析之HRegion上MemStore的flsuh流程(一)>.<HBase源代码分析之HRegion上MemStore的flsuh流程(二)>等文中.我们介绍了HRegion上Memstore flush的主体流程和主要细节. 可是,HRegion仅仅是HBase表中依照行的方向对一片连续的数据区域的抽象,它并不能对外提供单独的服务,供client或者HBase其他实体调用.而HRegion上MemStore的flush还是要通过HRegionServer来对…
今天主要研究一下两个功能 (1)双击返回键退出程序 (2)接近完美地退出程序 (1) 在非常多应用程序里都有一个功能,就是点击返回键,之后提示你再点击返回键就退出程序. 之前一直非常好奇这是怎么实现的,今天正好把开源中国安卓client源代码扒下来了,所以就在这里研究一下这个非常easy的功能. public class DoubleClickExitHelper { private final Activity mActivity; private boolean isOnKeyBacking…
前面七篇文章分析了Thrfit的方方面面,看到这里时应该对Thrift有了深入的理解. Thrift源代码分析(一)-- 基本概念 Thrift源代码分析(二)-- 协议和编解码 Thrift源代码分析(三)-- IDL和生成代码分析 Thrift源代码分析(四)-- 方法调用模型分析 Thrift源代码分析(五)-- FrameBuffer类分析 Thrift源代码分析(六)-- Transport传输层分析 Thrift源代码分析(七)-- TServerserver分析 以下通过一个实际能…
JobSubmitter.顾名思义,它是MapReduce中作业提交者,而实际上JobSubmitter除了构造方法外.对外提供的唯一一个非private成员变量或方法就是submitJobInternal()方法,它是提交Job的内部方法,实现了提交Job的全部业务逻辑. 本文,我们将深入研究MapReduce中用于提交Job的组件JobSubmitter. 首先,我们先看下JobSubmitter的类成员变量.例如以下: // 文件系统FileSystem实例 private FileSys…
文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6703247 上文介绍了Android应用程序的启动过程,即应用程序默认Activity的启动过程,一般来说,这种默认 Activity是在新的进程和任务中启动的:本文将继续分析在应用程序内部启动非默认Activity的过程的源代码,这种非默认Activity一般 是在原来的进程和任务中启动的. 这里,我们像上一篇文章Android应用程序启动过…
前面的几篇文章.我们具体介绍了HBase中HRegion上MemStore的flsuh流程,以及HRegionServer上MemStore的flush处理流程.那么,flush究竟是在什么情况下触发的呢?本文我们将具体探究下HBase中MemStore的flush流程的发起时机.看看究竟都有哪些操作.或者哪些后台服务进程会触发MemStore的flush. 首先.在<HBase源代码分析之HRegionServer上MemStore的flush处理流程(一)>和<HBase源代码分析之…
如何使用Intellij加载Spark源代码 转载注明原文http://www.cnblogs.com/shenh062326/p/6189643.html 查看Spark源代码或修改Spark源代码,都需要一个合适的IDE编辑器,而Spark源码编辑器首推Intellij, 但如果使用Intellij加载Spark源码方式不对,则会出现大量红点点,如下图所示,而且很多代码无法完成跳转,今天我就给大家介绍一下如何使用Intellij加载Spark源代码. 使用Intellij加载Spark代码…
LDA背景 LDA(隐含狄利克雷分布)是一个主题聚类模型,是当前主题聚类领域最火.最有力的模型之中的一个,它能通过多轮迭代把特征向量集合按主题分类.眼下,广泛运用在文本主题聚类中. LDA的开源实现有非常多.眼下广泛使用.可以分布式并行处理大规模语料库的有微软的LightLDA,谷歌plda.plda+,sparkLDA等等. 以下介绍这3种LDA: LightLDA依赖于微软自己实现的multiverso參数server.server底层使用mpi或zeromq发送消息. LDA模型(word…
http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache.spark.rdd.RDD#count org.apache.spark.SparkContext#runJob org.apache.spark.scheduler.DAGScheduler#runJob org.apache.spark.scheduler.DAGScheduler#submit…
/** Spark SQL源代码分析系列文章*/ 前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的. 那么基于以上存储结构,我们查询cache在jvm内的数据又是怎样查询的,本文将揭示查询In-Memory Data的方式. 一.引子 本例使用hive console里查询cache后的src表. select value from src 当我们将src表cache到了内存后,再次查询src,能够通过analyzed运行计划来观察内部调…
/** Spark SQL源代码分析系列文章*/ 前几篇文章介绍了Spark SQL的Catalyst的核心执行流程.SqlParser,和Analyzer,本来打算直接写Optimizer的,可是发现忘记介绍TreeNode这个Catalyst的核心概念,介绍这个能够更好的理解Optimizer是怎样对Analyzed Logical Plan进行优化的生成Optimized Logical Plan,本文就将TreeNode基本架构进行解释. 一.TreeNode类型 TreeNode Li…
/** Spark SQL源代码分析系列*/ 前几篇文章介绍了Spark SQL的Catalyst的核心运行流程.SqlParser,和Analyzer 以及核心类库TreeNode,本文将具体解说Spark SQL的Optimizer的优化思想以及Optimizer在Catalyst里的表现方式,并加上自己的实践.对Optimizer有一个直观的认识. Optimizer的主要职责是将Analyzer给Resolved的Logical Plan依据不同的优化策略Batch.来对语法树进行优化.…
从决定写Spark SQL文章的源代码分析,到现在一个月的时间,一个又一个几乎相同的结束很快,在这里也做了一个综合指数,方便阅读,下面是读取顺序 :) 第一章 Spark SQL源代码分析之核心流程 第二篇 Spark SQL Catalyst源代码分析之SqlParser 第三篇 Spark SQL Catalyst源代码分析之Analyzer 第四篇 Spark SQL Catalyst源代码分析之TreeNode Library 第五篇 Spark SQL Catalyst源代码分析之Op…
/** Spark SQL源代码分析系列文章*/ 自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几人到了几十人,并且发展速度异常迅猛,究其原因,个人觉得有下面2点: 1.整合:将SQL类型的查询语言整合到 Spark 的核心RDD概念里.这样能够应用于多种任务,流处理,批处理,包含机器学习里都能够引入Sql.     2.效率:由于Shark受到hive的编程模型限制,无法再继续优化来适应Spa…
概述 近期工作上忙死了--广播变量这一块事实上早就看过了,一直没有贴出来. 本文基于Spark 1.0源代码分析,主要探讨广播变量的初始化.创建.读取以及清除. 类关系 BroadcastManager类中包括一个BroadcastFactory对象的引用.大部分操作通过调用BroadcastFactory中的方法来实现. BroadcastFactory是一个Trait,有两个直接子类TorrentBroadcastFactory.HttpBroadcastFactory.这两个子类实现了对H…
在spark mllib 1.1加入版本stat包,其中包括一些统计数据有关的功能.本文分析中卡方检验和实施的主要原则: 一个.根本 在stat包实现Pierxunka方检验,它包括以下类别 (1)适配度检验(Goodness of Fit test):验证一组观察值的次数分配是否异于理论上的分配. (2)独立性检验(independence test) :验证从两个变量抽出的配对观察值组是否互相独立(比如:每次都从A国和B国各抽一个人,看他们的反应是否与国籍无关) 计算公式: 当中O表示观測值…
http://blog.csdn.net/u011239443/article/details/56843264 在<深入理解Spark 2.1 Core (九):迭代计算和Shuffle的原理与源代码分析 >我们解说了.以传统Hadoop MapReduce相似的从HDFS中读取数据,再到rdd.HadoopRDD.compute便能够调用函数f,即map中的函数的过程.在<深入理解Spark 2.1 Core (十):Shuffle map端的原理与源代码分析>我们深入解说了s…
上周Spark1.2刚公布,周末在家没事,把这个特性给了解一下,顺便分析下源代码,看一看这个特性是怎样设计及实现的. /** Spark SQL源代码分析系列文章*/ (Ps: External DataSource使用篇地址:Spark SQL之External DataSource外部数据源(一)演示样例 http://blog.csdn.net/oopsoom/article/details/42061077) 一.Sources包核心 Spark SQL在Spark1.2中提供了Exte…
/** Spark SQL源代码分析系列文章*/ 接上一篇文章Spark SQL Catalyst源代码分析之Physical Plan.本文将介绍Physical Plan的toRDD的详细实现细节: 我们都知道一段sql,真正的运行是当你调用它的collect()方法才会运行Spark Job,最后计算得到RDD. lazy val toRdd: RDD[Row] = executedPlan.execute() Spark Plan基本包括4种操作类型,即BasicOperator基本类型…
spark可以运行在standalone,yarn,mesos等多种模式下,当前我们用的最普遍的是yarn模式,在yarn模式下又分为client和cluster.本文接下来将分析yarn cluster下任务提交的过程.也就是回答,在yarn cluster模式下,任务是怎么提交的问题.在yarn cluster模式下,spark任务提交涉及四个角色(client, application, driver以及executor)之间的交互.接下来,将详细分析这四个角色在任务提交过程中都做了那些事…
/** Spark SQL源代码分析系列文章*/ 在SQL的世界里,除了官方提供的经常使用的处理函数之外.一般都会提供可扩展的对外自己定义函数接口,这已经成为一种事实的标准. 在前面Spark SQL源代码分析之核心流程一文中,已经介绍了Spark SQL Catalyst Analyzer的作用,其中包括了ResolveFunctions这个解析函数的功能.可是随着Spark1.1版本号的公布.Spark SQL的代码有非常多新完好和新功能了.和我先前基于1.0的源代码分析多少有些不同,比方支…
1.理论基础 线性回归(Linear Regression)问题属于监督学习(Supervised Learning)范畴,又称分类(Classification)或归纳学习(Inductive Learning);这类分析中训练数据集中给出的数据类标是确定的.机器学习的目标是,对于给定的一个训练数据集,通过不断的分析和学习产生一个联系属性集合和类标集合的分类函数(Classification Function)或预測函数(Prediction Function),这个函数称为分类模型(Clas…
/** Spark SQL源代码分析系列文章*/ 前面几篇文章解说了Spark SQL的核心运行流程和Spark SQL的Catalyst框架的Sql Parser是如何接受用户输入sql,经过解析生成Unresolved Logical Plan的. 我们记得Spark SQL的运行流程中还有一个核心的组件式Analyzer,本文将会介绍Analyzer在Spark SQL里起到了什么作用. Analyzer位于Catalyst的analysis package下.主要职责是将Sql Pars…
使用Jquery+EasyUI 进行框架项目开发案例解说之中的一个 员工管理源代码分享 在開始解说之前,我们先来看一下什么是Jquery EasyUI?jQuery EasyUI是一组基于jQuery的UI插件集合,而jQuery EasyUI的目标就是帮助web开发人员更轻松的打造出功能丰富而且美观的UI界面.开发人员不须要编写复杂的javascript,也不须要对css样式有深入的了解,开发人员须要了解的仅仅有一些简单的html标签.jQuery EasyUI为我们提供了大多数UI控件的使用…
Volley源代码分析系列那里一段时间,告诉我,有许多私人留言,同时一些问题抛出.对于一些简单的问题,我们跳,这两天被连接到朋友@smali提出的问题.告诉我你不得不赞叹查看源代码时的详细程度,大家一块思考一下. Q:在写入文件头数据的时候为何不直接写入Int而是通过移位的方式来完毕? 我们来看一下相应的源代码: writeInt(os, CACHE_MAGIC); static void writeInt(OutputStream os, int n) throws IOException {…