链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约数. 思路:大数的质因数分解仅仅能用随机算法Miller Rabin和Pollard_rho.在測试多的情况下正确率是由保证的. 代码: #include <iostream> #include <cstdio> #include <cstring> #include &l…
ACM常用模板合集 #include <bits/stdc++.h> using namespace std; typedef long long ll; ll pr; ll pmod(ll a, ll b, ll p) { return (a * b - (ll)((long double)a / p * b) * p + p) % p; } //普通的快速乘会T ll gmod(ll a, ll b, ll p) { ll res = 1; while (b) { if (b &…
RhoPollard Rho是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:MillerRabinMillerRabin素数测试. 操作流程 首先,我们先用MillerRabinMillerRabin判断当前数xx是否为质数,若是,则可直接统计信息并退出函数 然后是各种证明及优化,我觉得不大实用,这个板子是我改了很多遍了,也过了很多题的板子.用着很舒服,无论卡常,不卡常,速度相差不大,也可以加read. #include <bits/stdc++.h> using namespac…
#include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<ctime> #include<cmath> #include<iostream> using namespace std; #define LL long long LL n; #define maxs 80 LL fac[maxs],num[maxs],lf…
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1044  Solved: 322[Submit][Status][Discuss] Description   Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如果不是质数,输出它最大的质因子是哪个.…
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是质数,否则\(n\)是合数. 代码 bool is_prime(int n){ if(n<2) return 0; int m=sqrt(n); for(int i=2;i<=m;i++){ if(n%i==0) return 0; } return 1; } 方法二.线性筛 用 \(O(n)\)…
Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如果不是质数,输出它最大的质因子是哪个. Output 第一行CAS(CAS<=350,代表测试数据的组数) 以下CAS行:每行一个数字,保证是在64位长整形范围内的正数. 对于每组测试数据:输出Prime,代表它是质数,或者输出它最大的质因子,代表它是和数 Sample Input 6 2 13 1…
Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机算法固有的循环 Pollard Rho算法在其他因数分解算法[3]中不算太出众,但其空间复杂度Θ(1)的优势和好打的代码使得OIer更倾向于使用Pollard Rho算法 毕竟试除法太慢了,谁没事打Pollard Rho不打试除法 Pollard Rho原理 生日悖论 如果一年只有365天(不计算闰…
\(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点图.关于\(Millar Robin\)算法的时间复杂度在我的博客应该有所备注.由于本人不擅长时间复杂度分析,如果对于时间复杂度有任何疑问,欢迎在下方指出. 1.1 问题的引入 给定一正整数\(N \in \mathbb{N}^*\),试快速找到它的一个因数. 很久很久以前,我们曾学过试除法来解决这…
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学MillerRabin素数测试). 期望下,\(Pollard\ Rho\)算法可以达到极快的复杂度. 核心思想 在\(ZJOI2019Day1\)讲课期间,它是被\(CQZ\)神仙作为随机算法内的一部分来进行介绍的. 由此可见,其核心思想便是随机二字. 操作流程 首先,我们先用\(MillerRabi…
BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho Description Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如果不是质数,输出它最大的质因子是哪个. Output 第一行CAS(CAS<=350,代表测试数据的组数) 以下CAS行:每行一个数字,保证是在64位长整形范围内的正数. 对于每…
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要把询问范围加到 \(10^{18}\) ,再多组询问呢? Miller 和 Rabin 建立了Miller-Rabin 质数测试算法. \(\\\) Fermat 测试 首先我们知道费马小定理: \[ a^{p-1}\equiv 1\pmod p \] 当且仅当 \(p\) 为素数时成立. 逆命题是…
两个没什么卵用的算法. 只放一下模板: BZOJ3667 //BZOJ 3667 //by Cydiater //2017.2.20 #include <iostream> #include <queue> #include <map> #include <ctime> #include <cmath> #include <cstring> #include <string> #include <cstdlib>…
前言 $Miller-Robbin$ 与 $Pollard Rho$ 虽然都是随机算法,不过用起来是真的爽. $Miller Rabin$ 算法是一种高效的质数判断方法.虽然是一种不确定的质数判断法,但是在选择多种底数的情况下,正确率是可以接受的. $Pollard Rho$ 是一个非常玄学的方式,用于在 $O(n^{1/4})$ 的期望时间复杂度内计算合数$n$的某个非平凡因子. 事实上算法导论给出的是 $O(\sqrt p)$ , $p$ 是 $n$ 的某个最小因子,满足 $p$ 与 $\f…
题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include <stdio.h> #include <algorithm> #include <string.h> #include <cstdlib> #include <cmath> using namespace std; long long n; long lon…
整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范围比较小) 无论素数判定还是因子分解,试除法(Trial Division)都是首先要进行的步骤.令m=n,从2~根n一一枚举,如果当前数能够整除m,那么当前数就是n的素数因子,并用整数m 将当前数除尽为止. 若循环结束后m是大于1的整数,那么此时m也是n的素数因子. 事例如HDU1164:15mm…
有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab. 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试. Pollard Rho是一个非常玄学的方式,用于在O(n^1/4)的期望时间复杂度内计算合数n的某个非平凡因子.事实上算法导论给出的是O(√p),p是n的某个最小因子,满足p与n/p互质.但是这些都是期望,未必符合实际.但事实上Pollard Rho算法在实际环境中运行的相当不错. Pollard Rh…
题目链接 容易发现如果我们求出p和q这题就差不多快变成一个sb题了. 于是我们就用Pollard Rho算法进行大数分解. 至于这个算法的原理,emmm 其实也不是很清楚啦 #include<cstdio> #include<cstring> #include<algorithm> #include<cstdlib> #include<cctype> #include<ctime> using namespace std; inlin…
第三十五个知识点:给针对ECDLP问题的Pollard rho,Pollard "Kangaroo",parallel Pollard rho攻击的一个粗略的描述 我们的目标是对任意一个有限循环阿贝尔群\(G\),解决离散对数问题\(h = g^x\).问题进行详细描述,给定一个循环群\(G = <g>\),\(G\)的阶是素数\(p\),给定\(G\)中元素\(h\),我们需要找到这样的\(x\)使得\(h = g^x\)成立.我们使用上一篇中的方法进行计算时,时间复杂度…
STL算法 STL 算法是一些模板函数,提供了相当多的有用算法和操作,从简单如for_each(遍历)到复杂如stable_sort(稳定排序),头文件是:#include <algorithm>.常用STL 算法库包括:sort快速排序算法.二分查找算法.枚举排列算法等. 1. sort排序系列 sort:对给定区间所有元素进行排序(全排)stable_sort:对给定区间所有元素进行稳定排序,就是相等的元素位置不变,原来在前面的还在前面.partial_sort:对给定区间所有元素部分排序…
BZOJ_4802_欧拉函数_MR+pollard rho+欧拉函数 Description 已知N,求phi(N) Input 正整数N.N<=10^18 Output 输出phi(N) Sample Input 8 Sample Output 4 直接MR+Pollard rho分解质因数即可.具体可见https://www.cnblogs.com/suika/p/9127065.html 记得判重,我的map不知道为何T了.   代码: #include <cstdio> #inc…
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/problem/P4607 题解 首先观察一些性质. 一个回文串可以轮换产生多少个本质不同的串?周期那么多个. 可是有一种特殊情况,就是对于长度为偶数的回文串\(a=ss^Rss^Rss^R...ss^R\) (\(s^R\)表示\(s\)的reverse), 如果轮换位数恰好等于周期的一半,那么会产生\(…
说实话,我知道每一步都干啥,但我完全不知道为啥这么做,也不知道为什么是正确的,反正会用就行了~ #include <cmath> #include <cstdio> #include <algorithm> #define ll long long #define ull unsigned long long #define setIO(s) freopen(s".in","r",stdin) using namespace st…
题目链接 Pollard_Rho:http://blog.csdn.net/thy_asdf/article/details/51347390 #include<cstdio> #include<cctype> #include<algorithm> #define gc() getchar() const int p[]={2,3,5,7,11,13,17,19}; typedef long long LL; LL Ans; inline LL read() { LL…
目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in the Middle的算法过程 1.4Meet in the Middle的时间复杂度分析 2.代码实现 例题 [SPOJ ABCDEF] 法1: 结果合并法 法2:哈希表 法3:map 3.扩展运用 [BZOJ 4800] 冰球世界锦标赛 [POJ 1186] 方程的解数 [BZOJ 2679]…
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #define ll long long using namespace std; int n; ll x,mx; ll gcd(ll a,ll b) { if(!b)return a; return gcd(b,a%b); } i64 mul(i64 a,i64 b,…
#include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> #include <algorithm> #include <math.h> #include <stdlib.h> #include<time.h> #define ll long long #define INF 0x3f3f3f3f #define ma…
Miller-Rabin模板 #include<iostream> #include<cstdio> #include<algorithm> using namespace std; long long T,n,mx; long long mul(long long a,long long b,long long mod) { long long nw=a*b-(long long)((long double)a/mod*b+1e-8)*mod; return nw&l…
目录 问题 流程 代码 生日悖论 end 问题 给定n,要求对n质因数分解 普通的试除法已经不能应用于大整数了,我们需要更快的算法 流程 大概就是找出\(n=c*d\) 如果\(c\)是素数,结束,不是继续递归处理. 具体一点的话 1.先对n进行\(miller\_rabin\)测试,是素数就直接结束了 如果不会的话,看我前篇博客的介绍吧 为何还要多写个\(miller\_rabin\),他没有非平凡因子,他要保证复杂度? 2.随机基底a和c,生成序列\(x_{0}=a,x_{i}=x_{i-1…
x = lcm/gcd,假设答案为a,b,那么a*b = x且gcd(a,b) = 1,因为均值不等式所以当a越接近sqrt(x),a+b越小. x的范围是int64的,所以要用Pollard_rho算法去分解因子.因为a,b互质,所以我们把相同因子一起处理. 最多16个不同的因子:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47, 乘积为 614889782588491410, 乘上下一个质数53会爆int64范围. 所以剩下暴力枚举一下就好. #include…