牛顿迭代法,又名切线法,这里不详细介绍,简单说明每一次牛顿迭代的运算:首先将各个方程式在一个根的估计值处线性化(泰勒展开式忽略高阶余项),然后求解线性化后的方程组,最后再更新根的估计值.下面以求解最简单的非线性二元方程组为例(平面二维定位最基本原理),贴出源代码: 1.新建函数fun.m,定义方程组 function f=fun(x); %定义非线性方程组如下 %变量x1 x2 %函数f1 f2 syms x1 x2 f1 = sqrt((x1-4)^2 + x2^2)-sqrt(17); f2…
OpenCASCADE解非线性方程组 eryar@163.com Abstract. 在科学技术领域里常常提出求解非线性方程组的问题,例如,用非线性函数拟合实验数据问题.非线性网络问题.几何上的曲线曲面求交问题等.OpenCASCADE中有关于非线性方程组定义的类及其求解类,本文主要介绍如何在OpenCASCADE中定义非线性方程组,及对其进行求解. Key Words. Function Set, Function Set Root, Newton Raphson Algorithm 1.In…
高中好友突然问我一道这样的问题,似乎是因为他们专业要做一个计算器,其中的一道习题是要求计算器实现这样的功能. 整理一下要求:解aX + e^X = b 方程.解方程精度要求0.01,给定方程只有一解,a>0,b>0,0<X<20. 当被第一次问及这样一个问题的时候,我脑海里反映的第一个方法就是「牛顿迭代法(NewtonMethod」.然而自己算法功底太差了,从来没有真正去了解过牛顿迭代法,反正早晚都是要学的,正好便借着这个机会学习了一个. 我一直认为牛顿迭代法的效率应该是几个近似求…
利用迭代算法解决问题,需要做好以下三个方面的工作: 一.确定迭代变量 在可以用迭代算法解决的问题中,我们可以确定至少存在一个可直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量. 二.建立迭代关系式 所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成. 三.对迭代过程进行控制 在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地执行下去.迭代过程的控制通常可分为两种情况…
函数文件: function x=newton_Iterative_method(f,n,Initial) x0=Initial; tol=1e-11; x1=x0-Jacobian(f,n,x0)\F(f,x0); while (norm(x1-x0,2)>tol) %数值解的2范数是否在误差范围内 x0=x1; x1=x0-Jacobian(f,n,x0)\F(f,x0); end x=x1;%不动点 function g=Jacobian(f,n,a) %求解任意矩阵的雅可比矩阵 %% s…
4. 使用牛顿迭代法求方程的解:x^3-2x-5=0区间为[2,3]这里的"^"表示乘方. package chapter4; public class demo4 { public static void main(String[] args) { double x=2; for(int i=0;i<20;i++) { x=-f(x)/f1(x)+x; } System.out.println(x+""); } static double f(double…
求解非线性超定方程组,网上搜到的大多是线性方程组的最小二乘解法,对于非线性方程组无济于事. 这里分享一种方法:SciPy库的scipy.optimize.leastsq函数. import numpy as np from scipy.optimize import leastsq from math import sqrt def func(i): x,y,z = i return np.asarray(( x**2-x*y+4, x**2+y**2-x*z-25, z**2-y*x+4, x…
一.题目描述 描述: 计算一个数字的立方根,不使用库函数. 函数原型double getCubeRoot(double input) 输入: 待求解参数 double类型 输出: 输出参数的立方根,保留一位小数 样例输入: 216 样例输出: 6.0 二.解题报告 本题要求一个数的立方根的近似值,精确到小数点后的一位.这里使用 牛顿迭代法 求近似值. 牛顿迭代法,又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解…
在各种伪距定位算法中,最小二乘法是一种比较简单而广泛的方法,该算法可以分为以下几步: 1.准备数据与设置初始值 这里准备数据,主要是对于各颗可见卫星,收集到它们在同一时刻的伪距测量值,计算测量值的各项偏差.误差成分的校正量,然后计算出误差校正后的伪距测量值,这里假设伪距为理想距离加上随机高斯误差.设置初始值,假设大概知道位置坐标,则设定其为初始值,也可根据上一次定位结果设定:若什么都不了解,那么初值设置为0,只不过多几次迭代过程罢了. 2.非线性方程组线性化(不详细解释,就是得到雅克比矩阵).…
UVA 10428 - The Roots option=com_onlinejudge&Itemid=8&page=show_problem&category=494&problem=1369&mosmsg=Submission+received+with+ID+13941229" target="_blank" style="">题目链接 题意:给定一个一元多次方程组,要求求出全部根 思路:利用牛顿迭代法…